
 

CHAPTER

5Linear Transformations

TRANSFORMING SPACE

Although a vector can be used to indicate a particular type of movement, actual vectors
themselves are essentially static, unchanging objects. For example, if we represent the
edges of a particular image on a computer screen by vectors, then these vectors are fixed
in place. However, when we want to move or alter the image in some way, such as rotating
it about a point on the screen, we need a function to calculate the new position for each of
the original vectors.

This suggests that we need another “tool” in our arsenal: functions that move a given
set of vectors in a prescribed “linear” manner. Such functions are called linear transforma-
tions. Just as we saw in Chapter 4 that general vector spaces are abstract generalizations
of R

n, we will find in this chapter that linear transformations are the corresponding abstract
generalization of matrix multiplication.

In this chapter,we study functions that map the vectors in one vector space to those in
another.We concentrate on a special class of these functions,known as linear transfor-
mations. The formal definition of a linear transformation is introduced in Section 5.1
along with several of its fundamental properties. In Section 5.2,we show that the effect
of any linear transformation is equivalent to multiplication by a corresponding matrix.
In Section 5.3, we examine an important relationship between the dimensions of the
domain and the range of a linear transformation,known as the DimensionTheorem. In
Section 5.4, we introduce two special types of linear transformations: one-to-one and
onto. In Section 5.5, these two types of linear transformations are combined to form
isomorphisms, which are used to establish that all n-dimensional vector spaces are in
some sense equivalent. Finally, in Section 5.6, we return to the topic of eigenvalues
and eigenvectors to study them in the context of linear transformations.

Elementary Linear Algebra
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5.1 INTRODUCTION TO LINEAR TRANSFORMATIONS
In this section, we introduce linear transformations and examine their elementary
properties.

Functions

If you are not familiar with the terms domain, codomain, range, image, and pre-
image in the context of functions, read Appendix B before proceeding.The following
example illustrates some of these terms:

Example 1
Let f : M23 → M22 be given by

f

([
a b c
d e f

])
�

[
a b
0 0

]
.

Then f is a function that maps one vector space to another. The domain of f is M23, the
codomain of f is M22, and the range of f is the set of all 2 � 2 matrices with second row entries

equal to zero. The image of

[
1 2 3
4 5 6

]
under f is

[
1 2
0 0

]
. The matrix

[
1 2 10

11 12 13

]
is one of

the pre-images of

[
1 2
0 0

]
under f . Also, the image under f of the set S of all matrices of the form[

7 ∗ ∗
∗ ∗ ∗

]
(where “∗” represents any real number) is the set f (S) containing all matrices of the

form

[
7 ∗
0 0

]
. Finally, the pre-image under f of the set T of all matrices of the form

[
a a � 2
0 0

]

is the set f �1(T ) consisting of all matrices of the form

[
a a � 2 ∗
∗ ∗ ∗

]
.

Linear Transformations

Definition Let V and W be vector spaces, and let f : V → W be a function from
V to W . (That is, for each vector v ∈ V , f (v) denotes exactly one vector of W .)
Then f is a linear transformation if and only if both of the following are true:

(1) f (v1 � v2) � f (v1) � f (v2), for all v1, v2 ∈ V
(2) f (cv) � cf (v), for all c ∈ R and all v ∈ V .

Properties (1) and (2) insist that the operations of addition and scalar multiplica-
tion give the same result on vectors whether the operations are performed before
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f is applied (in V) or after f is applied (in W). Thus, a linear transformation is a
function between vector spaces that “preserves” the operations that give structure to
the spaces.

To determine whether a given function f from a vector space V to a vector space W
is a linear transformation, we need only verify properties (1) and (2) in the definition,
as in the next three examples.

Example 2
Consider the mapping f : Mmn → Mnm, given by f (A) � AT for any m � n matrix A. We will
show that f is a linear transformation.

(1) We must show that f (A1 �A2)� f (A1)� f (A2), for matrices A1, A2 ∈ Mmn. However,
f (A1 � A2) � (A1 � A2)T � AT

1 � AT
2 (by part (2) of Theorem 1.12) � f (A1) � f (A2).

(2) We must show that f (cA) � cf (A), for all c ∈ R and for all A ∈ Mmn. However, f (cA) �

(cA)T � c(AT ) (by part (3) of Theorem 1.12)�cf (A).

Hence, f is a linear transformation.

Example 3
Consider the function g : Pn → Pn�1 given by g(p) � p′, the derivative of p. We will show that
g is a linear transformation.

(1) We must show that g(p1 � p2) � g(p1) � g(p2), for all p1,p2 ∈ Pn. Now, g(p1 � p2) �(
p1 � p2

)′. From calculus we know that the derivative of a sum is the sum of the
derivatives, so

(
p1 � p2

)′
� p′

1 � p′
2 � g(p1) � g(p2).

(2) We must show that g(cp) � cg(p), for all c ∈ R and p ∈ Pn. Now, g(cp) �
(
cp
)′. Again,

from calculus we know that the derivative of a constant times a function is equal to the
constant times the derivative of the function, so (cp)′ � c(p′) � cg(p).

Hence, g is a linear transformation.

Example 4
Let V be a finite dimensional vector space, and let B be an ordered basis for V. Then every
element v ∈ V has its coordinatization [v]B with respect to B. Consider the mapping f : V → R

n

given by f (v) � [v]B. We will show that f is a linear transformation.
Let v1,v2 ∈ V. By Theorem 4.20, [v1 � v2]B � [v1]B � [v2]B. Hence,

f (v1 � v2) � [v1 � v2]B � [v1]B � [v2]B � f (v1) � f (v2).

Next, let c ∈ R and v ∈ V. Again by Theorem 4.20, [cv]B � c [v]B. Hence,

f (cv) � [cv]B � c [v]B � cf (v).

Thus, f is a linear transformation from V to R
n.
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Not every function between vector spaces is a linear transformation. For example,
consider the function h:R2 → R

2 given by h([x,y]) � [x � 1,y � 2] � [x,y] � [1,�2].
In this case, h merely adds [1,�2] to each vector [x,y] (see Figure 5.1). This type of
mapping is called a translation. However, h is not a linear transformation. To show
that it is not, we have to produce a counterexample to verify that either property
(1) or property (2) of the definition fails. Property (1) fails, since h([1,2] � [3,4]) �
h([4,6]) � [5,4], while h([1,2]) � h([3,4]) � [2,0] � [4,2] � [6,2].

In general, when given a function f between vector spaces, we do not always
know right away whether f is a linear transformation. If we suspect that either pro-
perty (1) or (2) does not hold for f , then we look for a counterexample.

Linear Operators and Some Geometric Examples

An important type of linear transformation is one that maps a vector space to itself.

Definition Let V be a vector space. A linear operator on V is a linear transfor-
mation whose domain and codomain are both V .

Example 5
If V is any vector space, then the mapping i: V → V given by i(v) � v for all v ∈ V is a linear
operator, known as the identity linear operator. Also, the constant mapping z: V → V given by
z(v) � 0V is a linear operator known as the zero linear operator (see Exercise 2).

The next few examples exhibit important geometric operators. In these examples,
assume that all vectors begin at the origin.

Example 6
Reflections: Consider the mapping f : R

3 → R
3 given by f ([a1,a2,a3]) � [a1,a2,�a3]. This

mapping “reflects” the vector [a1,a2,a3] through the xy-plane, which acts like a “mirror” (see

(x, y )

[1, 22]

(x 1 1, y 2 2)

y

x

y 2 1

y 2 2

x11

FIGURE 5.1

A translation in R
2
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Figure 5.2). Now, since

f ([a1,a2,a3] � [b1,b2,b3]) � f ([a1 � b1,a2 � b2,a3 � b3])
� [a1 � b1,a2 � b2,�(a3 � b3)]
� [a1,a2,�a3] � [b1,b2,�b3]
� f ([a1,a2,a3]) � f ([b1,b2,b3]), and

f (c[a1,a2,a3]) � f ([ca1,ca2,ca3]) � [ca1,ca2,�ca3] � c[a1,a2,�a3] � cf ([a1,a2,a3]),

we see that f is a linear operator. Similarly, reflection through the xz-plane or the yz-plane is
also a linear operator on R

3 (see Exercise 4).

Example 7
Contractions and Dilations: Consider the mapping g: R

n → R
n given by scalar multiplication by

k, where k ∈ R; that is, g(v) � kv, for v ∈ R
n. The function g is a linear operator (see Exercise 3).

If |k| > 1, g represents a dilation (lengthening) of the vectors in R
n; if |k| < 1, g represents a

contraction (shrinking).

Example 8
Projections: Consider the mapping h: R

3 → R
3 given by h([a1,a2,a3]) � [a1,a2,0]. This map-

ping takes each vector in R
3 to a corresponding vector in the xy-plane (see Figure 5.3). Similarly,

(a1, a2, a3)

(a1, a2, 0)

(a1, a2, 2a3)

z

y

x

FIGURE 5.2

Reflection in R
3 through the xy-plane
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(a1, a2, a3)

(a1, a2, 0)

z

y

x

FIGURE 5.3

Projection of [a1,a2,a3] to the xy-plane

consider the mapping j: R
4 → R

4 given by j([a1,a2,a3,a4]) � [0,a2,0,a4]. This mapping takes
each vector in R

4 to a corresponding vector whose first and third coordinates are zero. The
functions h and j are both linear operators (see Exercise 5). Such mappings, where at least
one of the coordinates is “zeroed out,” are examples of projection mappings. You can verify that
all such mappings are linear operators. (Other types of projection mappings are illustrated in
Exercises 6 and 7.)

Example 9
Rotations: Let � be a fixed angle in R

2, and let l: R
2 → R

2 be given by

l

([
x

y

])
�

[
cos� �sin �

sin � cos�

][
x

y

]
�

[
x cos� � y sin �

x sin � � y cos�

]
.

In Exercise 9 you are asked to show that l rotates [x,y] counterclockwise through the angle �

(see Figure 5.4).
Now, let v1 � [x1,y1] and v2 � [x2,y2] be two vectors in R

2. Then,

l(v1 � v2) �

[
cos� �sin �

sin � cos�

]
(v1 � v2)

�

[
cos� �sin �

sin � cos�

]
v1 �

[
cos� �sin �

sin � cos�

]
v2

� l (v1) � l (v2) .
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(x, y )

[x, y ]
�l ([x, y ])

FIGURE 5.4

Counterclockwise rotation of [x, y] through an angle � in R
2

Similarly, l(cv) � cl(v), for any c ∈ R and v ∈ R
2. Hence, l is a linear operator.

Beware! Not all geometric operations are linear operators. Recall that the translation
function is not a linear operator!

Multiplication Transformation

The linear operator in Example 9 is actually a special case of the next example,which
shows that multiplication by an m � n matrix is always a linear transformation from
R

n to R
m.

Example 10
Let A be a given m � n matrix. We show that the function f : R

n → R
m defined by f (x) � Ax, for

all x ∈ R
n, is a linear transformation. Let x1,x2 ∈ R

n. Then f (x1 � x2) � A(x1 � x2) � Ax1 �

Ax2 � f (x1) � f (x2). Also, let x ∈ R
n and c ∈ R. Then, f (cx) � A(cx) � c(Ax) � cf (x).

For a specific example of the multiplication transformation, consider the matrix

A �

[
�1 4 2

5 6 �3

]
. The mapping given by

f

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠�

[
�1 4 2

5 6 �3

]⎡⎣x1

x2

x3

⎤
⎦�

[
�x1 � 4x2 � 2x3

5x1 � 6x2 � 3x3

]

is a linear transformation from R
3 to R

2. In the next section, we will show that the
converse of the result in Example 10 also holds; every linear transformation from R

n

to R
m is equivalent to multiplication by an appropriate m � n matrix.
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Elementary Properties of Linear Transformations

We now prove some basic properties of linear transformations. From here on, we
usually use italicized capital letters, such as “L,” to represent linear transformations.

Theorem 5.1 Let V and W be vector spaces, and let L: V → W be a linear trans-
formation. Let 0V be the zero vector in V and 0W be the zero vector in W.
Then

(1) L(0V ) � 0W
(2) L(�v) � �L(v), for all v ∈ V
(3) L(a1v1 � a2v2 � · · · � anvn) � a1L(v1) � a2L(v2) � · · · � anL(vn), for all

a1, . . . ,an ∈ R, and v1, . . . ,vn ∈ V, for n 	 2.

Proof.

Part (1):

L(0V ) � L(00V ) part (2) of Theorem 4.1, in V
� 0L(0V ) property (2) of linear transformation

� 0W part (2) of Theorem 4.1, in W

Part (2):

L(�v) � L(�1v) part (3) of Theorem 4.1, in V
� �1(L(v)) property (2) of linear transformation

� �L(v) part (3) of Theorem 4.1, in W

Part (3): (Abridged) This part is proved by induction. We prove the Base Step (n � 2)

here and leave the Inductive Step as Exercise 29. For the Base Step, we must
show that L(a1v1 � a2v2) � a1L(v1) � a2L(v2). But,

L(a1v1 � a2v2) � L(a1v1) � L(a2v2) property (1) of linear transformation

� a1L(v1) � a2L(v2) property (2) of linear transformation.

The next theorem asserts that the composition L2 ◦ L1 of linear transformations L1

and L2 is again a linear transformation (see Appendix B for a review of composition of
functions).

Theorem 5.2 Let V1,V2, and V3 be vector spaces. Let L1: V1 → V2 and L2: V2 → V3
be linear transformations. Then L2 ◦ L1: V1 → V3 given by (L2 ◦ L1)(v) � L2(L1(v)), for
all v ∈ V1, is a linear transformation.
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Proof. (Abridged) To show that L2 ◦ L1 is a linear transformation, we must show that for all
c ∈ R and v,v1,v2 ∈ V,

(L2 ◦ L1)(v1 � v2) � (L2 ◦ L1)(v1) � (L2 ◦ L1)(v2)

and (L2 ◦ L1)(cv) � c(L2 ◦ L1)(v).

The first property holds since

(L2 ◦ L1)(v1 � v2) � L2(L1(v1 � v2))

� L2(L1(v1) � L1(v2)) because L1 is a linear
transformation

� L2(L1(v1)) � L2(L1(v2)) because L2 is a linear
transformation

� (L2 ◦ L1)(v1) � (L2 ◦ L1)(v2).

We leave the proof of the second property as Exercise 33.

Example 11
Let L1 represent the rotation of vectors in R

2 through a fixed angle � (as in Example 9), and let
L2 represent the reflection of vectors in R

2 through the x-axis. That is, if v � [v1,v2], then

L1(v) �

[
cos� �sin �

sin � cos�

][
v1

v2

]
and L2 (v) �

[
v1

�v2

]
.

Because L1 and L2 are both linear transformations, Theorem 5.2 asserts that

L2 (L1 (v)) � L2

([
v1 cos� � v2 sin �

v1 sin � � v2 cos�

])
�

[
v1 cos� � v2 sin �

�v1 sin � � v2 cos�

]

is also a linear transformation. L2 ◦ L1 represents a rotation of v through � followed by a reflection
through the x-axis.

Theorem 5.2 generalizes naturally to more than two linear transformations.That is,
if L1,L2, . . . ,Lk are linear transformations and the composition Lk ◦ · · · ◦ L2 ◦ L1 makes
sense, then Lk ◦ · · · ◦ L2 ◦ L1 is also a linear transformation.

Linear Transformations and Subspaces

The final theorem of this section assures us that, under a linear transformation L:
V → W , subspaces of V “correspond” to subspaces of W , and vice versa.
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Theorem 5.3 Let L: V → W be a linear transformation.

(1) If V ′ is a subspace of V, then L(V ′) � {L(v) |v ∈ V ′}, the image of V ′ in W, is
a subspace of W. In particular, the range of L is a subspace of W.

(2) If W ′ is a subspace of W, then L�1(W ′) � {v |L(v) ∈ W ′}, the pre-image of
W ′ in V, is a subspace of V.

We prove part (1) and leave part (2) as Exercise 31.

Proof. Part (1): Suppose that L: V → W is a linear transformation and that V ′ is a subspace
of V. Now, L

(V ′), the image of V ′ in W (see Figure 5.5), is certainly nonempty (why?).
Hence, to show that L

(V ′) is a subspace of W, we must prove that L
(V ′) is closed under

addition and scalar multiplication.
First, suppose that w1,w2 ∈ L

(V ′). Then, by definition of L
(V ′), we have w1 � L(v1) and

w2 � L(v2), for some v1,v2 ∈ V ′. Then, w1 � w2 � L(v1) � L(v2) � L(v1 � v2) because
L is a linear transformation. However, since V ′ is a subspace of V , (v1 � v2) ∈ V ′. Thus,
(w1 � w2) is the image of (v1 � v2) ∈ V ′, and so (w1 � w2) ∈ L

(V ′). Hence, L
(V ′) is closed

under addition.
Next, suppose that c ∈ R and w ∈ L

(V ′). By definition of L
(V ′) , w � L(v), for some

v ∈ V ′. Then, cw � cL(v) � L(cv) since L is a linear transformation. Now, cv ∈ V ′, because
V ′ is a subspace of V. Thus, cw is the image of cv ∈ V ′, and so cw ∈ L

(V ′). Hence, L
(V ′)

is closed under scalar multiplication.

Example 12

Let L: M22 → R
3, where L

([
a b
c d

])
� [b,0,c]. L is a linear transformation (verify!). By Theo-

rem 5.3, the range of any linear transformation is a subspace of the codomain. Hence, the range
of L � {[b,0,c]| b,c ∈ R} is a subspace of R

3.

Also, consider the subspace U2 �

{[
a b
0 d

]∣∣∣∣∣a,b,d ∈ R

}
of M22. Then the image of U2

under L is { [b,0,0]|b ∈ R}. This image is a subspace of R
3, as Theorem 5.3 asserts. Finally,

consider the subspace W � { [b,e,2b]| b,e ∈ R} of R
3. The pre-image of W consists of all

L

W 9
WV

V 9

FIGURE 5.5

Subspaces of V correspond to subspaces of W under a linear transformation L: V → W
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matrices in M22 of the form

[
a b

2b d

]
. Notice that this pre-image is a subspace of M22, as

claimed by Theorem 5.3.

New Vocabulary

codomain (of a linear transformation)
composition of linear transformations
contraction (mapping)
dilation (mapping)
domain (of a linear transformation)
identity linear operator
image (of a vector in the domain)
linear operator
linear transformation

pre-image (of a vector in the codomain)
projection (mapping)
range (of a linear transformation)
reflection (mapping)
rotation (mapping)
shear (mapping)
translation (mapping)
zero linear operator

Highlights

■ A linear transformation is a function from one vector space to another that
preserves the operations of addition and scalar multiplication. That is, under
a linear transformation, the image of a linear combination of vectors is the linear
combination of the images of the vectors having the same coefficients.

■ A linear operator is a linear transformation from a vector space to itself.

■ A nontrivial translation of the plane (R2) or of space (R3) is never a linear operator,
but all of the following are linear operators:contraction (of R

n),dilation (of R
n),

reflection of space through the xy-plane (or xz-plane or yz-plane), rotation of
the plane about the origin through a given angle �, projection (of R

n) in which
one or more of the coordinates are zeroed out.

■ Multiplication of vectors in R
n on the left by a fixed m � n matrix A is a linear

transformation from R
n to R

m.

■ Multiplying a vector on the left by the matrix

[
cos� �sin �
sin � cos�

]
is equivalent to

rotating the vector counterclockwise about the origin through the angle �.

■ Linear transformations always map the zero vector of the domain to the zero
vector of the codomain.

■ A composition of linear transformations is a linear transformation.

■ Under a linear transformation,subspaces of the domain map to subspaces of the
codomain,and the pre-image of a subspace of the codomain is a subspace of the
domain.
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EXERCISES FOR SECTION 5.1
1. Determine which of the following functions are linear transformations. Prove

that your answers are correct. Which are linear operators?
�(a) f : R2 → R

2 given by f ([x,y]) � [3x � 4y,�x � 2y]
�(b) h: R4 → R

4 given by h([x1,x2,x3,x4]) � [x1 � 2, x2 � 1, x3,�3]
(c) k: R3 → R

3 given by k([x1,x2,x3]) � [x2, x3, x1]
�(d) l:M22 → M22 given by l

([
a b
c d

])
�

[
a � 2c � d 3b � c

�4a b � c � 3d

]

(e) n:M22 → R given by n

([
a b
c d

])
� ad � bc

�(f ) r:P3 → P2 given by r(ax3 � bx2 � cx � d) � ( 3
√

a)x2 � b2x � c

(g) s: R3 → R
3 given by s([x1,x2,x3]) � [cosx1, sin x2, ex3 ]

�(h) t :P3 → R given by t(a3x3 � a2x2 � a1x � a0) � a3 � a2 � a1 � a0

(i) u: R4 → R given by u
([x1,x2,x3,x4]

)
� |x2|

�(j) v:P2 → R given by v
(
ax2 � bx � c

)
� abc

�(k) g:M32 → P4 given by g

⎛
⎜⎝
⎡
⎢⎣a11 a12

a21 a22

a31 a32

⎤
⎥⎦
⎞
⎟⎠� a11x4 � a21x2 � a31

�(l) e: R2 → R given by e([x,y]) �
√

x2 � y2

2. Let V and W be vector spaces.

(a) Show that the identity mapping i: V → V given by i(v) � v, for all v ∈ V ,
is a linear operator.

(b) Show that the zero mapping z:V → W given by z(v) � 0W , for all v ∈ V ,
is a linear transformation.

3. Let k be a fixed scalar in R. Show that the mapping f : R
n → R

n given by
f ([x1,x2, . . . ,xn]) � k[x1,x2, . . . ,xn] is a linear operator.

4. (a) Show that f :R3 → R
3 given by f ([x,y,z]) � [�x,y,z] (reflection of a

vector through the yz-plane) is a linear operator.

(b) What mapping from R
3 to R

3 would reflect a vector through the xz-plane?
Is it a linear operator? Why or why not?

(c) What mapping from R
2 to R

2 would reflect a vector through the y-axis?
through the x-axis? Are these linear operators? Why or why not?

5. Show that the projection mappings h: R
3 → R

3 given by h([a1,a2,a3]) �
[a1,a2,0] and j: R

4 → R
4 given by j([a1,a2,a3,a4]) � [0,a2,0,a4] are linear

operators.



 

5.1 Introduction to Linear Transformations 317

6. The mapping f :Rn → R given by f ([x1,x2, . . . ,xi , . . . ,xn]) � xi is another type
of projection mapping. Show that f is a linear transformation.

7. Let x be a fixed nonzero vector in R
3. Show that the mapping g:R3 → R

3 given
by g(y) � projxy is a linear operator.

8. Let x be a fixed vector in R
n. Prove that L: R

n →R given by L(y) � x · y is a
linear transformation.

9. Let � be a fixed angle in the xy-plane. Show that the linear operator L:R2 →
R

2 given by L

([
x
y

])
�

[
cos� �sin �
sin � cos�

][
x
y

]
rotates the vector [x,y] coun-

terclockwise through the angle � in the plane. (Hint: Consider the vector
[x′,y′], obtained by rotating [x,y] counterclockwise through the angle �. Let
r �

√
x2 � y2. Then x � r cos� and y � r sin �, where � is the angle shown in

Figure 5.6. Notice that x′ � r(cos(� � �)) and y′ � r(sin(� � �)). Then show
that L([x,y]) � [x′,y′].)

10. (a) Explain why the mapping L: R3 → R
3 given by

L

⎛
⎝
⎡
⎣x

y
z

⎤
⎦
⎞
⎠�

⎡
⎣cos� �sin � 0

sin � cos� 0
0 0 1

⎤
⎦
⎡
⎣x

y
z

⎤
⎦

is a linear operator.

(b) Show that the mapping L in part (a) rotates every vector in R
3 about the

z-axis through an angle of � (as measured relative to the xy-plane).
�(c) What matrix should be multiplied times [x,y,z] to create the linear opera-

tor that rotates R
3 about the y-axis through an angle � (relative to the

xz-plane)? (Hint: When looking down from the positive y-axis toward

(x, y)

(x9, y9)

�

�

FIGURE 5.6

The vectors [x,y] and [x′,y′]



 

318 CHAPTER 5 Linear Transformations

the xz-plane in a right-handed system, the positive z-axis rotates 90◦
counterclockwise into the positive x-axis.)

11. Shears: Let f1, f2: R2 → R
2 be given by

f1

([
x

y

])
�

[
1 k

0 1

][
x

y

]
�

[
x � ky

y

]

and

f2

([
x

y

])
�

[
1 0

k 1

][
x

y

]
�

[
x

kx � y

]
.

The mapping f1 is called a shear in the x-direction with factor k; f2 is called
a shear in the y-direction with factor k. The effect of these functions (for
k > 1) on the vector [1,1] is shown in Figure 5.7. Show that f1 and f2 are linear
operators directly, without using Example 10.

12. Let f : Mnn → R be given by f (A) � trace(A). (The trace is defined in
Exercise 14 of Section 1.4.) Prove that f is a linear transformation.

13. Show that the mappings g,h:Mnn → Mnn given by g(A) � A � AT and h(A) �
A � AT are linear operators on Mnn.

14. (a) Show that if p ∈ Pn, then the (indefinite integral) function f : Pn → Pn�1,
where f (p) is the vector

∫
p(x) dx with zero constant term, is a linear

transformation.

(b) Show that if p ∈ Pn, then the (definite integral) function g: Pn → R given
by g(p) �

∫ b
a p dx is a linear transformation, for any fixed a,b ∈ R.

15. Let V be the vector space of all functions f from R to R that are infinitely
differentiable (that is, for which f (n), the nth derivative of f , exists for every

(a)

(1, 1)
(1, 1)

(1 � k, 1)
(1, 1 � k)

(b)

FIGURE 5.7

(a) Shear in the x-direction; (b) shear in the y-direction (both for k > 0)
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integer n 	 1). Use induction and Theorem 5.2 to show that for any given
integer k 	 1, L:V → V given by L(f ) � f (k) is a linear operator.

16. Consider the function f : Mnn → Mnn given by f (A) � BA, where B is some
fixed n � n matrix. Show that f is a linear operator.

17. Let B be a fixed nonsingular matrix in Mnn. Show that the mapping f :Mnn →
Mnn given by f (A) � B�1AB is a linear operator.

18. Let a be a fixed real number.

(a) Let L:Pn → R be given by L(p(x)) � p(a). (That is,L evaluates polynomials
in Pn at x � a.) Show that L is a linear transformation.

(b) Let L: Pn → Pn be given by L(p(x)) � p(x � a). (For example, when a is
positive, L shifts the graph of p(x) to the left by a units.) Prove that L is a
linear operator.

19. Let A be a fixed matrix in Mnn. Define f :Pn → Mnn by

f (anxn � an�1xn�1 � · · · � a1x � a0)

� anAn � an�1An�1 � · · · � a1A � a0In.

Show that f is a linear transformation.

20. Let V be the unusual vector space from Example 7 in Section 4.1. Show that
L:V → R given by L(x) � ln(x) is a linear transformation.

21. Let V be a vector space, and let x �� 0 be a fixed vector in V . Prove that
the translation function f : V → V given by f (v) � v � x is not a linear
transformation.

22. Show that if A is a fixed matrix in Mmn and y �� 0 is a fixed vector in R
m, then

the mapping f :Rn → R
m given by f (x) � Ax � y is not a linear transformation

by showing that part (1) of Theorem 5.1 fails for f .

23. Prove that f : M33 → R given by f (A) � |A| is not a linear transformation.
(A similar result is true for Mnn, for n > 1.)

24. Suppose L1: V → W is a linear transformation and L2: V → W is defined by
L2(v) � L1(2v). Show that L2 is a linear transformation.

25. Suppose L: R
3 → R

3 is a linear operator and L([1,0,0]) � [�2,1,0],
L([0,1,0]) � [3,�2,1], and L([0,0,1]) � [0,�1,3]. Find L([�3,2,4]). Give a
formula for L([x,y,z]), for any [x,y,z] ∈ R

3.

�26. Suppose L:R2 → R
2 is a linear operator and L(i � j) � i � 3j and L(�2i � 3j) �

�4i � 2j. Express L(i) and L(j) as linear combinations of i and j.

27. Let L:V → W be a linear transformation. Show that L(x � y) � L(x) � L(y), for
all vectors x,y ∈ V .



 

320 CHAPTER 5 Linear Transformations

28. Part (3) of Theorem 5.1 assures us that if L: V → W is a linear transformation,
then L(av1 � bv2) � aL(v1) � bL(v2), for all v1,v2 ∈ V and all a,b ∈ R. Prove
that the converse of this statement is true. (Hint: Consider two cases: first
a � b � 1 and then b � 0.)

�29. Finish the proof of part (3) of Theorem 5.1 by doing the Inductive Step.

30. (a) Suppose that L:V → W is a linear transformation. Show that if {L(v1),
L(v2), . . . ,L(vn)} is a linearly independent set of n distinct vectors in W ,for
some vectors v1, . . . ,vn ∈ V , then {v1,v2, . . . ,vn} is a linearly independent
set in V .

�(b) Find a counterexample to the converse of part (a).

�31. Finish the proof of Theorem 5.3 by showing that if L:V → W is a linear trans-
formation and W ′ is a subspace of W with pre-image L�1

(W ′), then L�1
(W ′)

is a subspace of V .

32. Show that every linear operator L: R → R has the form L(x) � cx, for some
c ∈ R.

33. Finish the proof of Theorem 5.2 by proving property (2) of a linear transfor-
mation for L2 ◦ L1.

34. Let L1,L2: V → W be linear transformations. Define (L1 ⊕ L2): V → W by
(L1 ⊕ L2)(v) � L1(v) � L2(v) (where the latter addition takes place in W).
Also define (c � L1):V → W by (c � L1)(v) � c (L1(v)) (where the latter scalar
multiplication takes place in W).

(a) Show that (L1 ⊕ L2) and (c � L1) are linear transformations.

(b) Use the results in part (a) above and part (b) of Exercise 2 to show that
the set of all linear transformations from V to W is a vector space under
the operations ⊕ and �.

35. Let L:R2 → R
2 be a nonzero linear operator. Show that L maps a line to either

a line or a point.

�36. True or False:

(a) If L:V → W is a function between vector spaces for which L(cv) � cL(v),
then L is a linear transformation.

(b) If V is an n-dimensional vector space with ordered basis B, then L:V → R
n

given by L(v) � [v]B is a linear transformation.

(c) The function L: R
3 → R

3 given by L([x,y,z]) � [x � 1, y � 2, z � 3] is a
linear operator.

(d) If A is a 4 � 3 matrix, then L(v) � Av is a linear transformation from R
4

to R
3.

(e) A linear transformation from V to W always maps 0V to 0W .
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(f) If M1:V → W and M2:W → X are linear transformations, then M1 ◦ M2 is
a well-defined linear transformation.

(g) If L: V → W is a linear transformation, then the image of any subspace of
V is a subspace of W .

(h) If L: V → W is a linear transformation, then the pre-image of {0W } is a
subspace of V .

5.2 THE MATRIX OF A LINEAR TRANSFORMATION
In this section, we show that the behavior of any linear transformation L: V → W
is determined by its effect on a basis for V . In particular, when V and W are finite
dimensional and ordered bases for V and W are chosen,we can obtain a matrix corre-
sponding to L that is useful in computing images under L. Finally, we investigate how
the matrix for L changes as the bases for V and W change.

A Linear Transformation Is Determined by Its Action on a Basis

If the action of a linear transformation L: V → W on a basis for V is known, then
the action of L can be computed for all elements of V , as we see in the next
example.

Example 1
You can quickly verify that

B �
(
[0,4,0,1] , [�2,5,0,2] , [�3,5,1,1] , [�1,2,0,1]

)
is an ordered basis for R

4. Now suppose that L: R
4 → R

3 is a linear transformation for which

L
(
[0,4,0,1]

)
� [3,1,2], L([�2,5,0,2]) � [2,�1,1],

L([�3,5,1,1]) � [�4,3,0], and L([�1,2,0,1]) � [6,1,�1].
We can use the values of L on B to compute L for other vectors in R

4. For example, let v �

[�4,14,1,4]. By using row reduction, we see that [v]B � [2,�1,1,3] (verify!). So,

L(v) � L
(
2 [0,4,0,1] � 1 [�2,5,0,2] � 1 [�3,5,1,1] � 3 [�1,2,0,1]

)
� 2L

(
[0,4,0,1]

)
� 1L([�2,5,0,2]) � 1L([�3,5,1,1])

� 3L([�1,2,0,1])

� 2[3,1,2] � [2,�1,1] � [�4,3,0] � 3[6,1,�1]
� [18,9,0].
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In general, if v ∈ R
4 and [v]B � [k1,k2,k3,k4], then

L(v) � k1[3,1,2] � k2[2,�1,1] � k3[�4,3,0] � k4[6,1,�1]
� [3k1 � 2k2 � 4k3 � 6k4, k1 � k2 � 3k3 � k4, 2k1 � k2 � k4].

Thus, we have derived a general formula for L from its effect on the basis B.

Example 1 illustrates the next theorem.

Theorem 5.4 Let B � (v1,v2, . . . ,vn) be an ordered basis for a vector space V. Let W
be a vector space, and let w1,w2, . . . ,wn be any n vectors in W. Then there is a unique
linear transformation L: V → W such that L(v1) � w1, L(v2) � w2, . . . , L(vn) � wn.

Proof. (Abridged) Let B � (v1,v2, . . . ,vn) be an ordered basis for V, and let v ∈ V. Then
v � a1v1 � · · · � anvn, for some unique ai ’s in R. Let w1, . . . ,wn be any vectors in W.
Define L: V → W by L(v) � a1w1 � a2w2 � · · · � anwn. Notice that L(v) is well defined
since the ai ’s are unique.

To show that L is a linear transformation, we must prove that L(x1 � x2) � L(x1) �
L(x2) and L(cx1) � cL(x1), for all x1,x2 ∈ V and all c ∈ R. Suppose that x1 � d1v1 � · · · �
dnvn and x2 � e1v1 � · · · � envn. Then, by definition of L, L(x1) � d1w1 � · · · � dnwn and
L(x2) � e1wn � · · · � enwn. However,

x1 � x2 � (d1 � e1)v1 � · · · � (dn � en)vn,

so, L(x1 � x2) � (d1 � e1)w1 � · · · � (dn � en)wn,

again by definition of L. Hence, L(x1) � L(x2) � L(x1 � x2).
Similarly, suppose x ∈ V, and x � t1v1 � · · · � tnvn. Then, cx � ct1v1 � · · · � ctnvn,

and so L(cx) � ct1w1 � · · · � ctnwn � cL(x). Hence, L is a linear transformation.
Finally, the proof of the uniqueness assertion is straightforward and is left as

Exercise 25.

The Matrix of a Linear Transformation

Our next goal is to show that every linear transformation on a finite dimensional vector
space can be expressed as a matrix multiplication. This will allow us to solve prob-
lems involving linear transformations by performing matrix multiplications, which
can easily be done by computer. As we will see, the matrix for a linear transformation
is determined by the ordered bases B and C chosen for the domain and codomain,
respectively. Our goal is to find a matrix that takes the B-coordinates of a vector in the
domain to the C -coordinates of its image vector in the codomain.

Recall the linear transformation L: R4 → R
3 with the ordered basis B for R

4 from
Example 1. For v ∈ R

4,we let [v]B � [k1,k2,k3,k4],and obtained the following formula
for L:

L(v) � [3k1 � 2k2 � 4k3 � 6k4, k1 � k2 � 3k3 � k4, 2k1 � k2 � k4].
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Now, to keep matters simple, we select the standard basis C � (e1,e2,e3) for the
codomain R

3,so that the C -coordinates of vectors in the codomain are the same as the
vectors themselves. (That is, L(v) � [L(v)]C , since C is the standard basis.) Then this
formula for L takes the B-coordinates of each vector in the domain to the C -coordinates
of its image vector in the codomain. Now, notice that if

ABC �

⎡
⎢⎣3 2 �4 6

1 �1 3 1

2 1 0 �1

⎤
⎥⎦, then ABC

⎡
⎢⎢⎢⎣

k1

k2

k3

k4

⎤
⎥⎥⎥⎦�

⎡
⎢⎣3k1 � 2k2 � 4k3 � 6k4

k1 � k2 � 3k3 � k4

2k1 � k2 � k4

⎤
⎥⎦ .

Hence, the matrix A contains all of the information needed for carrying out the linear
transformation L with respect to the chosen bases B and C .

A similar process can be used for any linear transformation between finite
dimensional vector spaces.

Theorem 5.5 Let V and W be nontrivial vector spaces, with dim(V) � n and dim(W) �
m. Let B � (v1,v2, . . . ,vn) and C � (w1,w2, . . . ,wm) be ordered bases for V and
W, respectively. Let L: V → W be a linear transformation. Then there is a unique
m � n matrix ABC such that ABC [v]B � [L(v)]C , for all v ∈ V. (That is, ABC times the
coordinatization of v with respect to B gives the coordinatization of L(v) with respect
to C.)

Furthermore, for 1 � i � n, the ith column of ABC � [L(vi)]C .

Theorem 5.5 asserts that once ordered bases for V and W have been selected,
each linear transformation L: V → W is equivalent to multiplication by a unique
corresponding matrix. The matrix ABC in this theorem is known as the matrix of
the linear transformation L with respect to the ordered bases B (for V) and
C (for W). Theorem 5.5 also says that the matrix ABC is computed as follows: find
the image of each domain basis element vi in turn, and then express these images in
C -coordinates to get the respective columns of ABC .

The subscripts B and C on A are sometimes omitted when the bases being used
are clear from context. Beware! If different ordered bases are chosen for V or W , the
matrix for the linear transformation will probably change.

Proof. Consider the m � n matrix ABC whose ith column equals [L(vi)]C , for 1 � i � n. Let
v ∈ V. We first prove that ABC [v]B � [L(v)]C .

Suppose that [v]B � [k1,k2, . . . ,kn]. Then v � k1v1 � k2v2 � · · · � knvn, and L(v) �
k1L(v1) � k2L(v2) � · · · � knL(vn), by Theorem 5.1. Hence,

[L(v)]C � [k1L(v1) � k2L(v2) � · · · � knL(vn)]C

� k1 [L(v1)]C � k2 [L(v2)]C � · · · � kn [L(vn)]C by Theorem 4.19
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� k1(1st column of ABC ) � k2(2nd column of ABC )

� · · · � kn(nth column of ABC )

� ABC

⎡
⎢⎢⎢⎣

k1
k2
...

kn

⎤
⎥⎥⎥⎦� ABC [v]B.

To complete the proof, we need to establish the uniqueness of ABC . Suppose that H
is an m � n matrix such that H[v]B � [L(v)]C for all v ∈ V. We will show that H � ABC . It
is enough to show that the ith column of H equals the ith column of ABC , for 1 � i � n.
Consider the ith vector, vi, of the ordered basis B for V. Since [vi]B � ei, we have ith
column of H � Hei � H [vi]B � [L(vi)]C , and this is the ith column of ABC .

Notice that in the special case where the codomain W is R
m, and the basis C for

W is the standard basis,Theorem 5.5 asserts that the ith column of ABC is simply L(vi)

itself (why?).

Example 2
Table 5.1 lists the matrices corresponding to some geometric linear operators on R

3, with respect
to the standard basis. The columns of each matrix are quickly calculated using Theorem 5.5,
since we simply find the images L(e1), L(e2), and L(e3) of the domain basis elements e1, e2,
and e3. (Each image is equal to its coordinatization in the codomain since we are using the
standard basis for the codomain as well.)

Once the matrix for each transformation is calculated, we can easily find the image of any
vector using matrix multiplication. For example, to find the effect of the reflection L1 in Table 5.1
on the vector [3,�4,2], we simply multiply by the matrix for L1 to get

⎡
⎢⎣1 0 0

0 1 0
0 0 �1

⎤
⎥⎦
⎡
⎢⎣ 3

�4
2

⎤
⎥⎦�

⎡
⎢⎣ 3

�4
�2

⎤
⎥⎦ .

Example 3
We will find the matrix for the linear transformation L: P3 → R

3 given by

L(a3x3 � a2x2 � a1x � a0) � [a0 � a1,2a2,a3 � a0]

with respect to the standard ordered bases B � (x3,x2,x,1) for P3 and C � (e1,e2,e3) for R
3.

We first need to find L(v), for each v ∈ B. By definition of L, we have

L(x3) � [0,0,1], L(x2) � [0,2,0], L(x) � [1,0,0], and L(1) � [1,0,�1].
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Table 5.1 Matrices for several geometric linear operators on R
3

Transformation Formula Matrix

Reflection
(through xy-plane)

L1

⎛
⎝
⎡
⎣a1

a2

a3

⎤
⎦
⎞
⎠�

⎡
⎣ a1

a2

�a3

⎤
⎦

L1(e1)⎡
⎣1

0
0

L1(e2)

0
1
0

L1(e3)

0
0

�1

⎤
⎦

Contraction
or dilation

L2

⎛
⎝
⎡
⎣a1

a2

a3

⎤
⎦
⎞
⎠�

⎡
⎣ca1

ca2

ca3

⎤
⎦, for c ∈ R

L2(e1)⎡
⎣c

0
0

L2(e2)

0
c
0

L2(e3)

0
0
c

⎤
⎦

Projection
(onto xy-plane)

L3

⎛
⎝
⎡
⎣a1

a2

a3

⎤
⎦
⎞
⎠�

⎡
⎣a1

a2

0

⎤
⎦

L3(e1)⎡
⎣1

0
0

L3(e2)

0
1
0

L3(e3)

0
0
0

⎤
⎦

Rotation (about
z-axis through
angle �) (relative
to the xy-plane)

L4

⎛
⎝
⎡
⎣a1

a2

a3

⎤
⎦
⎞
⎠�

⎡
⎣a1 cos� � a2 sin �

a1 sin � � a2 cos�

a3

⎤
⎦

L4(e1)⎡
⎣cos�

sin �

0

L4(e2)

�sin �

cos�

0

L4(e3)

0
0
1

⎤
⎦

Shear (in the z-
direction with factor k)
(analog of Exercise
11 in Section 5.1)

L5

⎛
⎝
⎡
⎣a1

a2

a3

⎤
⎦
⎞
⎠�

⎡
⎣a1 � ka3

a2 � ka3

a3

⎤
⎦

L5(e1)⎡
⎣1

0
0

L5(e2)

0
1
0

L5(e3)

k
k
1

⎤
⎦

Since we are using the standard basis C for R
3, each of these images in R

3 is its own
C-coordinatization. Then by Theorem 5.5, the matrix ABC for L is the matrix whose columns
are these images; that is,

ABC �

L(x3)⎡
⎢⎣0

0
1

L(x2)

0
2
0

L(x)

1
0
0

L(1)

1
0

�1

⎤
⎥⎦.

We will compute L(5x3 � x2 � 3x � 2) using this matrix. Now,
[
5x3 � x2 � 3x � 2

]
B �

[5,�1,3,2]. Hence, multiplication by ABC gives

[
L(5x3 � x2 � 3x � 2)

]
C

�

⎡
⎢⎣0 0 1 1

0 2 0 0
1 0 0 �1

⎤
⎥⎦
⎡
⎢⎢⎢⎣

5
�1

3
2

⎤
⎥⎥⎥⎦�

⎡
⎢⎣ 5

�2
3

⎤
⎥⎦ .

Since C is the standard basis for R3, we have L(5x3 � x2 � 3x � 2) � [5,�2,3], which can be
quickly verified to be the correct answer.
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Example 4
We will find the matrix for the same linear transformation L: P3 → R

3 of Example 3 with respect
to the different ordered bases

D � (x3 � x2, x2 � x, x � 1, 1)

and E � ([�2,1,�3], [1,�3,0], [3,�6,2]).

You should verify that D and E are bases for P3 and R
3, respectively.

We first need to find L(v), for each v ∈ D. By definition of L, we have L(x3 � x2) � [0,2,1],
L(x2 � x) � [1,2,0], L(x � 1) � [2,0,�1], and L(1) � [1,0,�1]. Now we must find the coordi-
natization of each of these images in terms of the basis E for R

3. Since we must solve for the
coordinates of many vectors, it is quicker to use the transition matrix Q from the standard basis
C for R

3 to the basis E. From Theorem 4.22, Q is the inverse of the matrix whose columns are
the vectors in E; that is,

Q �

⎡
⎢⎣�2 1 3

1 �3 �6
�3 0 2

⎤
⎥⎦

�1

�

⎡
⎢⎣�6 �2 3

16 5 �9
�9 �3 5

⎤
⎥⎦.

Now, multiplying Q by each of the images, we get

[
L(x3 � x2)

]
E

� Q

⎡
⎢⎣0

2
1

⎤
⎥⎦�

⎡
⎢⎣�1

1
�1

⎤
⎥⎦,

[
L(x2 � x)

]
E

� Q

⎡
⎢⎣1

2
0

⎤
⎥⎦�

⎡
⎢⎣�10

26
�15

⎤
⎥⎦,

[L(x � 1)]E � Q

⎡
⎢⎣ 2

0
�1

⎤
⎥⎦�

⎡
⎢⎣�15

41
�23

⎤
⎥⎦, and [L(1)]E � Q

⎡
⎢⎣ 1

0
�1

⎤
⎥⎦�

⎡
⎢⎣ �9

25
�14

⎤
⎥⎦.

By Theorem 5.5, the matrix ADE for L is the matrix whose columns are these products.

ADE �

⎡
⎢⎣�1 �10 �15 �9

1 26 41 25
�1 �15 �23 �14

⎤
⎥⎦

We will compute L(5x3 � x2 � 3x � 2) using this matrix. We must first find the representation
for 5x3 � x2 � 3x � 2 in terms of the basis D. Solving 5x3 � x2 � 3x � 2 � a(x3 � x2) � b(x2 �

x) � c(x � 1) � d(1) for a, b, c, and d, we get the unique solution a � 5, b � �6, c � 9, and
d � �7 (verify!). Hence,

[
5x3 � x2 � 3x � 2

]
D � [5,�6,9,�7]. Then

[
L(5x3 � x2 � 3x � 2)

]
E

�

⎡
⎢⎣�1 �10 �15 �9

1 26 41 25
�1 �15 �23 �14

⎤
⎥⎦
⎡
⎢⎢⎢⎣

5
�6

9
�7

⎤
⎥⎥⎥⎦�

⎡
⎢⎣�17

43
�24

⎤
⎥⎦.
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This answer represents a coordinate vector in terms of the basis E, and so

L(5x3 � x2 � 3x � 2) � �17

⎡
⎢⎣�2

1
�3

⎤
⎥⎦� 43

⎡
⎢⎣ 1

�3
0

⎤
⎥⎦� 24

⎡
⎢⎣ 3

�6
2

⎤
⎥⎦�

⎡
⎢⎣ 5

�2
3

⎤
⎥⎦,

which agrees with the answer in Example 3.

Finding the New Matrix for a Linear Transformation after
a Change of Basis

The next theorem indicates precisely how the matrix for a linear transformation
changes when we alter the bases for the domain and codomain.

Theorem 5.6 Let V and W be two nontrivial finite dimensional vector spaces with
ordered bases B and C, respectively. Let L: V → W be a linear transformation with
matrix ABC with respect to bases B and C. Suppose that D and E are other ordered
bases for V and W, respectively. Let P be the transition matrix from B to D, and let Q
be the transition matrix from C to E. Then the matrix ADE for L with respect to bases
D and E is given by ADE � QABCP�1.

The situation in Theorem 5.6 is summarized in Figure 5.8.

Proof. For all v ∈ V,

ABC [v]B � [L(v)]C by Theorem 5.5
⇒ QABC [v]B � Q [L(v)]C
⇒ QABC [v]B � [L(v)]E because Q is the transition matrix from C to E
⇒ QABCP�1[v]D � [L(v)]E . because P�1 is the transition matrix from D to B

However, ADE is the unique matrix such that ADE [v]D � [L(v)]E , for all v ∈ V. Hence,
ADE � QABCP�1.

ABC

ADE

[v]B

[v]D

[L(v)]C

[L(v)]E

Transition
matrix Q

(Matrix for L using B, C )

(Matrix for L using D, E )

Transition
matrix P

FIGURE 5.8

Relationship between matrices ABC and ADE for a linear transformation under a change of basis
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Theorem 5.6 gives us an alternate method for finding the matrix of a linear trans-
formation with respect to one pair of bases when the matrix for another pair of bases
is known.

Example 5
Recall the linear transformation L: P3 → R

3 from Examples 3 and 4, given by

L(a3x3 � a2x2 � a1x � a0) � [a0 � a1,2a2,a3 � a0].

Example 3 shows that the matrix for L using the standard bases B (for P3) and C (for R
3) is

ABC �

⎡
⎢⎣0 0 1 1

0 2 0 0
1 0 0 �1

⎤
⎥⎦.

Also, in Example 4, we computed directly to find the matrix ADE for the ordered bases D �

(x3 � x2, x2 � x, x � 1, 1) for P3 and E � ([�2,1,�3], [1,�3,0], [3,�6,2]) for R
3. Instead, we

now use Theorem 5.6 to calculate ADE . Recall from Example 4 that the transition matrix Q from
bases C to E is

Q �

⎡
⎢⎣

�6 �2 3

16 5 �9

�9 �3 5

⎤
⎥⎦.

Also, the transition matrix P�1 from bases D to B is

P�1 �

⎡
⎢⎢⎢⎢⎣

1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

⎤
⎥⎥⎥⎥⎦. (Verify!)

Hence,

ADE � QABCP�1 �

⎡
⎢⎣

�6 �2 3

16 5 �9

�9 �3 5

⎤
⎥⎦
⎡
⎢⎣0 0 1 1

0 2 0 0
1 0 0 �1

⎤
⎥⎦
⎡
⎢⎢⎢⎣

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

⎤
⎥⎥⎥⎦

�

⎡
⎢⎣�1 �10 �15 �9

1 26 41 25
�1 �15 �23 �14

⎤
⎥⎦,

which agrees with the result obtained for ADE in Example 4.
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Linear Operators and Similarity

Suppose L is a linear operator on a finite dimensional vector space V . If B is a basis for
V , then there is some matrix ABB for L with respect to B. Also, if C is another basis for
V , then there is some matrix ACC for L with respect to C . Let P be the transition matrix
from B to C (see Figure 5.9). Notice that by Theorem 5.6 we have ABB � P�1ACCP,
and so, by the definition of similar matrices, ABB and ACC are similar. This argument
shows that any two matrices for the same linear operator with respect to different
bases are similar. In fact, the converse is also true (see Exercise 20).

Example 6
Consider the linear operator L: R

3 → R
3 whose matrix with respect to the standard basis B

for R
3 is

ABB �
1

7

⎡
⎢⎣ 6 3 �2

3 �2 6
�2 6 3

⎤
⎥⎦ .

We will use eigenvectors to find another basis D for R
3 so that with respect to D,L has a much sim-

pler matrix representation. Now, pABB (x) � |xI3 � ABB| � x3 � x2 � x � 1 � (x � 1)2(x � 1)

(verify!).
By row reducing (1I3 � ABB) and (�1I3 � ABB) we find the basis {[3,1,0], [�2,0,1]} for

the eigenspace E1 for ABB and the basis {[1,�3,2]} for the eigenspace E�1 for ABB. (Again,
verify!) A quick check verifies that D � {[3,1,0], [�2,0,1], [1,�3,2]} is a basis for R

3 consisting
of eigenvectors for ABB.

Next, recall that ADD is similar to ABB. In particular, from the remarks right before this exam-
ple, ADD � P�1ABBP, where P is the transition matrix from D to B. Now, the matrix whose
columns are the vectors in D is the transition matrix from D to the standard basis B. Thus,

P �

⎡
⎢⎣3 �2 1

1 0 �3
0 1 2

⎤
⎥⎦ , with P�1 �

1

14

⎡
⎢⎣ 3 5 6

�2 6 10
1 �3 2

⎤
⎥⎦

ABB

ACC

[v]B

[v]C

[L(v)]B

[L(v)]C

Transition
matrix P

(Matrix for L using B)

(Matrix for L using C)

Transition
matrix P21

FIGURE 5.9

Relationship between matrices ABB and ACC for a linear operator under a change of basis
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as the transition matrix from B to D. Then,

ADD � P�1ABBP �

⎡
⎢⎣1 0 0

0 1 0
0 0 �1

⎤
⎥⎦,

a diagonal matrix with the eigenvalues 1 and �1 on the main diagonal.
Written in this form, the operator L is more comprehensible. Compare ADD to the matrix for

a reflection through the xy-plane given in Table 5.1. Now, because D is not the standard basis
for R

3, L is not a reflection through the xy-plane. But we can show that L is a reflection of all
vectors in R

3 through the plane formed by the two basis vectors for E1 (that is, the plane is the
eigenspace E1 itself). By the uniqueness assertion in Theorem 5.4, it is enough to show that L
acts as a reflection through the plane E1 for each of the three basis vectors of D.

Since [3,1,0] and [�2,0,1] are in the plane E1, we need to show that L “reflects” these
vectors to themselves. But this is true since L([3,1,0]) � 1[3,1,0] � [3,1,0], and similarly for
[�2,0,1]. Finally, notice that [1,�3,2] is orthogonal to the plane E1 (since it is orthogonal to both
[3,1,0] and [�2,0,1]). Therefore, we need to show that L “reflects” this vector to its opposite. But,
L([1,�3,2]) � �1[1,�3,2] � �[1,�3,2], and we are done. Hence, L is a reflection through the
plane E1.

Because the matrix ADD in Example 6 is diagonal, it is easy to see that pADD (x) �
(x � 1)2(x � 1). In Exercise 6 of Section 3.4, you were asked to prove that simi-
lar matrices have the same characteristic polynomial. Therefore, pABB(x) also equals
(x � 1)2(x � 1).

Matrix for the Composition of Linear Transformations

Our final theorem for this section shows how to find the corresponding matrix for the
composition of linear transformations. The proof is left as Exercise 15.

Theorem 5.7 Let V1,V2, and V3 be nontrivial finite dimensional vector spaces with
ordered bases B, C, and D, respectively. Let L1: V1 → V2 be a linear transformation with
matrix ABC with respect to bases B and C, and let L2: V2 → V3 be a linear transformation
with matrix ACD with respect to bases C and D. Then the matrix ABD for the composite
linear transformation L2 ◦ L1: V1 → V3 with respect to bases B and D is the product
ACDABC .

Theorem 5.7 can be generalized to compositions of several linear transformations,
as in the next example.

Example 7
Let L1,L2, . . . ,L5 be the geometric linear operators on R

3 given in Table 5.1. Let A1, . . . ,A5 be
the matrices for these operators using the standard basis for R

3. Then, the matrix for the
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composition L4 ◦ L5 is

A4A5 �

⎡
⎢⎣cos� �sin � 0

sin � cos� 0
0 0 1

⎤
⎥⎦
⎡
⎢⎣1 0 k

0 1 k
0 0 1

⎤
⎥⎦�

⎡
⎢⎣cos� �sin � kcos� � k sin �

sin � cos� k sin � � kcos�

0 0 1

⎤
⎥⎦ .

Similarly, the matrix for the composition L2 ◦ L3 ◦ L1 ◦ L5 is

A2A3A1A5 �

⎡
⎢⎣c 0 0

0 c 0
0 0 c

⎤
⎥⎦
⎡
⎢⎣1 0 0

0 1 0
0 0 0

⎤
⎥⎦
⎡
⎢⎣1 0 0

0 1 0
0 0 �1

⎤
⎥⎦
⎡
⎢⎣1 0 k

0 1 k
0 0 1

⎤
⎥⎦�

⎡
⎢⎣c 0 kc

0 c kc
0 0 0

⎤
⎥⎦ .

� Supplemental Material: You have now covered the prerequisites for
Section 7.3,“Complex Vector Spaces.”

� Application: You have now covered the prerequisites for Section 8.8,
“Computer Graphics.”

New Vocabulary

matrix for a linear transformation

Highlights

■ A linear transformation between finite dimensional vector spaces is uniquely
determined once the images of an ordered basis for the domain are specified.
(More specifically, let V and W be vector spaces, with dim(V) � n. Let B �
(v1,v2, . . . ,vn) be an ordered basis for V , and let w1,w2, . . . ,wn be any n (not
necessarily distinct) vectors in W . Then there is a unique linear transformation
L:V → W such that L(vi) � wi , for 1 � i � n.)

■ Every linear transformation between (nontrivial) finite dimensional vector
spaces has a unique matrix ABC with respect to the ordered bases B and C chosen
for the domain and codomain, respectively. (More specifically, let L: V → W be
a linear transformation, with dim(V) � n,dim(W) � m. Let B � (v1,v2, . . . ,vn)

and C � (w1,w2, . . . ,wm) be ordered bases for V and W , respectively. Then
there is a unique m � n matrix ABC such that ABC [v]B � [L(v)]C , for all v ∈ V .)

■ If ABC is the matrix for a linear transformation with respect to the ordered bases
B and C chosen for the domain and codomain, respectively, then the ith column
of ABC is the C -coordinatization of the image of the ith vector in B. That is, the
ith column of ABC equals [L(vi)]C .

■ After a change of bases for the domain and codomain,the new matrix for a given
linear transformation can be found using the original matrix and the transition
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matrices between bases. (More specifically, let L:V → W be a linear transforma-
tion between (nontrivial) finite dimensional vector spaces with ordered bases B
and C , respectively, and with matrix ABC in terms of bases B and C . If D and E
are other ordered bases for V and W , respectively, and P is the transition matrix
from B to D, and Q is the transition matrix from C to E, then the matrix ADE for
L in terms of bases D and E is ADE � QABCP�1.)

■ Matrices for several useful geometric operators on R
3 are given in Table 5.1.

■ The matrix for a linear operator (on a finite dimensional vector space) after a
change of basis is similar to the original matrix.

■ The matrix for the composition of linear transformations (using the same ordered
bases) is the product of the matrices for the individual linear transformations
in reverse order. (More specifically, if L1: V1 → V2 is a linear transformation
with matrix ABC with respect to ordered bases B and C , and L2: V2 → V3 is
a linear transformation with matrix ACD with respect to bases C and D, then
the matrix ABD for L2 ◦ L1: V1 → V3 with respect to bases B and D is given by
ABD � ACDABC .)

EXERCISES FOR SECTION 5.2
1. Verify that the correct matrix is given for each of the geometric linear operators

in Table 5.1.

2. For each of the following linear transformations L: V → W , find the matrix for
L with respect to the standard bases for V and W .
�(a) L: R

3 → R
3 given by L([x,y,z]) � [�6x � 4y � z,�2x � 3y � 5z, 3x �

y � 7z]
(b) L:R4 →R

2 given by L([x,y,z,w])� [3x �5y �z �2w,5x �y �2z �8w]
�(c) L: P3 → R

3 given by L(ax3 � bx2 � cx � d) � [4a � b � 3c � 3d, a �
3b � c � 5d,�2a � 7b � 5c � d]

(d) L:P3 → M22 given by

L(ax3 � bx2 � cx � d) �

[
�3a � 2c �b � 4d

4b � c � 3d �6a � b � 2d

]

3. For each of the following linear transformations L:V → W ,find the matrix ABC

for L with respect to the given bases B for V and C for W using the method of
Theorem 5.5:

�(a) L: R
3 → R

2 given by L([x,y,z]) � [�2x � 3z, x � 2y � z] with B �
([1,�3,2], [�4,13,�3], [2,�3,20]) and C � ([�2,�1], [5,3])
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(b) L: R
2 → R

3 given by L([x,y]) � [13x � 9y, �x � 2y,�11x � 6y] with
B � ([2,3], [�3,�4]) and C � ([�1,2,2], [�4,1,3], [1,�1,�1])

�(c) L:R2 → P2 given by L([a,b]) � (�a � 5b)x2 � (3a � b)x � 2b with B �
([5,3], [3,2]) and C � (3x2 � 2x,�2x2 � 2x � 1, x2 � x � 1)

(d) L: M22 → R
3 given by L

([
a b

c d

])
� [a � c � 2d,2a � b � d,�2c � d]

with B �

([
2 5

2 �1

]
,

[
�2 �2

0 1

]
,

[
�3 �4

1 2

]
,

[
�1 �3

0 1

])
and

C � ([7,0,�3], [2,�1,�2], [�2,0,1])
�(e) L: P2 → M23 given by

L(ax2 � bx � c) �

[
�a 2b � c 3a � c

a � b c �2a � b � c

]

with B � (�5x2 � x � 1,�6x2 � 3x � 1, 2x � 1) and C �([
1 0 0

0 0 0

]
,

[
0 �1 0

0 0 0

]
,

[
0 1 1

0 0 0

]
,

[
0 0 0

�1 0 0

]
,

[
0 0 0

0 1 1

]
,

[
0 0 0

0 0 1

])

4. In each case,find the matrix ADE for the given linear transformation L:V → W
with respect to the given bases D and E by first finding the matrix for L with
respect to the standard bases B and C for V and W , respectively,and then using
the method of Theorem 5.6.
�(a) L: R

3 → R
3 given by L([a,b,c]) � [�2a � b,�b � c, a � 3c] with D �

([15,�6,4], [2,0,1], [3,�1,1]) and E � ([1,�3,1], [0,3,�1], [2,�2,1])
�(b) L:M22 → R

2 given by

L

([
a b

c d

])
� [6a � b � 3c � 2d,�2a � 3b � c � 4d]

with

D �

([
2 1

0 1

]
,

[
0 2

1 1

]
,

[
1 1

2 1

]
,

[
1 1

1 1

])
and

E � ([�2,5], [�1,2])

(c) L:M22 → P2 given by

L

([
a b

c d

])
� (b � c)x2 � (3a � d)x � (4a � 2c � d)
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with

D �

([
3 �4
1 �1

]
,

[
�2 1

1 1

]
,

[
2 �2
1 �1

]
,

[
�2 1

0 1

])
and

E � (2x � 1,�5x2 � 3x � 1,x2 � 2x � 1)

5. Verify that the same matrix is obtained for L in Exercise 3(d) by first finding the
matrix for L with respect to the standard bases and then using the method of
Theorem 5.6.

6. In each case,find the matrix ABB for each of the given linear operators L:V → V
with respect to the given basis B by using the method of Theorem 5.5. Then,
check your answer by calculating the matrix for L using the standard basis and
applying the method of Theorem 5.6.
�(a) L: R

2 → R
2 given by L([x,y]) � [2x � y, x � 3y] with B � ([4,�1],

[�7,2])
�(b) L: P2 → P2 given by L(ax2 � bx � c) � (b � 2c)x2 � (2a � c)x � (a �

b � c) with B � (2x2 � 2x � 1, x,�3x2 � 2x � 1)

(c) L: M22 → M22 given by

L

([
a b
c d

])
�

[
2a � c � d a � b
�3b � 2d �a � 2c � 3d

]

with

B �

([
�2 �1

0 1

]
,

[
3 1
0 �1

]
,

[
�2 0

0 1

]
,

[
1 �1
1 �1

])

7. �(a) Let L: P3 → P2 be given by L(p) � p′, for p ∈ P3. Find the matrix for
L with respect to the standard bases for P3 and P2. Use this matrix to
calculate L(4x3 � 5x2 � 6x � 7) by matrix multiplication.

(b) Let L: P2 → P3 be the indefinite integral linear transformation; that is,
L(p) is the vector

∫
p(x) dx with zero constant term. Find the matrix for

L with respect to the standard bases for P2 and P3. Use this matrix to
calculate L(2x2 � x � 5) by matrix multiplication.

8. Let L: R
2 → R

2 be the linear operator that performs a counterclockwise
rotation through an angle of �

6 radians (30◦).

�(a) Find the matrix for L with respect to the standard basis for R
2.

(b) Find the matrix for L with respect to the basis B � ([4,�3], [3,�2]).
9. Let L:M23 → M32 be given by L(A) � AT .

(a) Find the matrix for L with respect to the standard bases.
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�(b) Find the matrix for L with respect to the bases

B �

([
1 0 0
0 0 0

]
,

[
0 1 �1
0 0 0

]
,

[
0 1 0
0 0 0

]
,

[
0 0 0

�1 0 0

]
,

[
0 0 0
0 �1 �1

]
,[

0 0 0
0 0 1

])
for M23, and

C �

⎛
⎝
⎡
⎣1 1

0 0
0 0

⎤
⎦ ,

⎡
⎣1 �1

0 0
0 0

⎤
⎦ ,

⎡
⎣0 0

1 1
0 0

⎤
⎦ ,

⎡
⎣0 0

1 �1
0 0

⎤
⎦ ,

⎡
⎣0 0

0 0
1 1

⎤
⎦ ,

⎡
⎣0 0

0 0
1 �1

⎤
⎦
⎞
⎠

for M32.

�10. Let B be a basis for V1, C be a basis for V2, and D be a basis for V3. Suppose
L1:V1 → V2 and L2:V2 → V3 are represented, respectively, by the matrices

ABC �

[
�2 3 �1

4 0 �2

]
and ACD �

⎡
⎣ 4 �1

2 0
�1 �3

⎤
⎦ .

Find the matrix ABD representing the composition L2 ◦ L1:V1 → V3.

11. Let L1:R3 → R
4 be given by L1([x,y,z])� [x �y �z, 2y �3z, x �3y,�2x �z],

and let L2: R4 → R
2 be given by L2([x,y,z,w]) � [2y � 2z � 3w, x � z � w].

(a) Find the matrices for L1 and L2 with respect to the standard bases in each
case.

(b) Find the matrix for L2 ◦ L1 with respect to the standard bases for R
3 and

R
2 using Theorem 5.7.

(c) Check your answer to part (b) by computing (L2 ◦ L1)([x,y,z]) and finding
the matrix for L2 ◦ L1 directly from this result.

12. Let A �

[
cos� �sin �
sin � cos�

]
, the matrix representing the counterclockwise rota-

tion of R
2 about the origin through an angle �.

(a) Use Theorem 5.7 to show that

A2 �

[
cos2� �sin 2�
sin 2� cos2�

]
.

(b) Generalize the result of part (a) to show that for any integer n 	 1,

An �

[
cosn� �sin n�
sin n� cosn�

]
.

13. Let B � (v1,v2, . . . ,vn) be an ordered basis for a vector space V . Find the matrix
with respect to B for each of the following linear operators L:V → V :
�(a) L(v) � v, for all v ∈ V (identity linear operator)
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(b) L(v) � 0, for all v ∈ V (zero linear operator)
�(c) L(v) � cv, for all v ∈ V , and for some fixed c ∈ R (scalar linear operator)

(d) L: V → V given by L(v1) � v2, L(v2) � v3, . . . , L(vn�1) � vn, L(vn) � v1

(forward replacement of basis vectors)
�(e) L: V → V given by L(v1) � vn, L(v2) � v1, . . . , L(vn�1) � vn�2, L(vn) �

vn�1 (reverse replacement of basis vectors)

14. Let L: Rn → R be a linear transformation. Prove that there is a vector x in R
n

such that L(y) � x · y for all y ∈ R
n.

�15. Prove Theorem 5.7.

16. Let L: R
3 → R

3 be given by L([x,y,z]) � [�4y � 13z,�6x � 5y � 6z,
2x � 2y � 3z].
(a) What is the matrix for L with respect to the standard basis for R

3?

(b) What is the matrix for L with respect to the basis

B � ([�1,�6,2], [3,4,�1], [�1,�3,1])?

(c) What does your answer to part (b) tell you about the vectors in B? Explain.

17. In Example 6, verify that pABB(x) � (x � 1)2(x � 1), {[3,1,0], [�2,0,1]} is a
basis for the eigenspace E1, {[1,�3,2]} is a basis for the eigenspace E�1, the
transition matrices P and P�1 are as indicated, and, finally, ADD � P�1ABBP
is a diagonal matrix with entries 1,1, and �1, respectively, on the main
diagonal.

18. Let L:R3 → R
3 be the linear operator whose matrix with respect to the standard

basis B for R
3 is

ABB �
1

9

⎡
⎣8 2 2

2 5 �4

2 �4 5

⎤
⎦ .

�(a) Calculate and factor pABB(x). (Be sure to incorporate 1
9 correctly into your

calculations.)
�(b) Solve for a basis for each eigenspace for L. Combine these to form a basis

C for R
3.

�(c) Find the transition matrix P from C to B.

(d) Calculate ACC using ABB,P, and P�1.

(e) Use ACC to give a geometric description of the operator L, as was done in
Example 6.
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19. Let L be a linear operator on a vector space V with ordered basis B �
(v1, . . . ,vn). Suppose that k is a nonzero real number, and let C be the ordered
basis (kv1, . . . ,kvn) for V . Show that ABB � ACC .

20. Let V be an n-dimensional vector space, and let X and Y be similar n � n
matrices. Prove that there is a linear operator L:V → V and bases B and C such
that X is the matrix for L with respect to B and Y is the matrix for L with
respect to C . (Hint: Suppose that Y � P�1XP. Choose any basis B for V . Then
create the linear operator L: V → V whose matrix with respect to B is X. Let
vi be the vector so that [vi]B � ith column of P. Define C to be (v1, . . . ,vn).
Prove that C is a basis for V . Then show that P�1 is the transition matrix from
B to C and that Y is the matrix for L with respect to C .)

21. Let B � ([a,b], [c,d]) be a basis for R
2. Then ad � bc �� 0 (why?). Let L: R2 →

R
2 be a linear operator such that L([a,b]) � [c,d] and L([c,d]) � [a,b]. Show

that the matrix for L with respect to the standard basis for R
2 is

1

ad � bc

[
cd � ab a2 � c2

d2 � b2 ab � cd

]
.

22. Let L: R
2 → R

2 be the linear transformation where L(v) is the reflection of v
through the line y � mx. (Assume that the initial point of v is the origin.) Show
that the matrix for L with respect to the standard basis for R

2 is

1

1 � m2

[
1 � m2 2m

2m m2 � 1

]
.

(Hint: Use Exercise 19 in Section 1.2.)

23. Find the set of all matrices with respect to the standard basis for R
2 for all linear

operators that

(a) Take all vectors of the form [0,y] to vectors of the form
[
0,y′]

(b) Take all vectors of the form [x,0] to vectors of the form [x′,0]
(c) Satisfy both parts (a) and (b) simultaneously

24. Let V and W be finite dimensional vector spaces,and let Y be a subspace of V .
Suppose that L: Y → W is a linear transformation. Prove that there is a linear
transformation L′: V → W such that L′(y) � L(y) for every y ∈ Y . (L′ is called
an extension of L to V .)

�25. Prove the uniqueness assertion in Theorem 5.4. (Hint: Let v be any vector in
V . Show that there is only one possible answer for L(v) by expressing L(v) as
a linear combination of the wi’s.)
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�26. True or False:

(a) If L:V → W is a linear transformation, and B � (v1,v2, . . . ,vn) is an
ordered basis for V , then for any v ∈ V , L(v) can be computed if
L(v1),L(v2), . . . ,L(vn) are known.

(b) There is a unique linear transformation L: R3 → P3 such that L([1,0,0]) �
x3 � x2,L([0,1,0]) � x3 � x2, and L([0,0,1]) � x3 � x2.

(c) If V , W are nontrivial finite dimensional vector spaces and L: V → W is a
linear transformation, then there is a unique matrix A corresponding to L.

(d) If L:V → W is a linear transformation and B is a (finite nonempty) ordered
basis for V , and C is a (finite nonempty) ordered basis for W , then [v]B �
ABC [L(v)]C .

(e) If L:V → W is a linear transformation and B � (v1,v2, . . . ,vn) is an ordered
basis for V , and C is a (finite nonempty) ordered basis for W , then the ith
column of ABC is [L(vi)]C .

(f) The matrix for the projection of R
3 onto the xz-plane (with respect to the

standard basis) is

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦.

(g) If L: V → W is a linear transformation, and B and D are (finite nonempty)
ordered bases for V , and C and E are (finite nonempty) ordered bases for
W , then ADEP � QABC , where P is the transition matrix from B to D, and
Q is the transition matrix from C to E.

(h) If L: V → V is a linear operator on a nontrivial finite dimensional vector
space, and B and D are ordered bases for V , then ABB is similar to ADD.

(i) Similar square matrices have identical characteristic polynomials.

(j) If L1,L2: R
2 → R

2 are linear transformations with matrices

[
1 2
3 4

]
and[

0 1
1 0

]
, respectively,with respect to the standard basis, then the matrix for

L2 ◦ L1 with respect to the standard basis equals

[
1 2
3 4

][
0 1
1 0

]
.

5.3 THE DIMENSION THEOREM
In this section, we introduce two special subspaces associated with a linear transfor-
mation L: V → W : the kernel of L (a subspace of V) and the range of L (a subspace
of W). We illustrate techniques for calculating bases for both the kernel and range
and show their dimensions are related to the rank of any matrix for the linear trans-
formation. We then use this to show that any matrix and its transpose have the same
rank.



 

5.3 The Dimension Theorem 339

Kernel and Range

Definition Let L: V → W be a linear transformation. The kernel of L, denoted
by ker(L), is the subset of all vectors in V that map to 0W . That is, ker(L) �
{v ∈ V |L(v) � 0W }.The range of L,or, range(L), is the subset of all vectors in W
that are the image of some vector in V . That is, range(L) = {L(v) |v ∈ V}.

Remember that the kernel1 is a subset of the domain and that the range is a subset of
the codomain. Since the kernel of L: V → W is the pre-image of the subspace {0W }
of W , it must be a subspace of V by Theorem 5.3. That theorem also assures us that
the range of L is a subspace of W . Hence, we have

Theorem 5.8 If L: V → W is a linear transformation, then the kernel of L is a subspace
of V and the range of L is a subspace of W.

Example 1
Projection: For n 	 3, consider the linear operator L: R

n → R
n given by L([a1,a2, . . . ,an]) �

[a1,a2,0, . . . ,0]. Now, ker(L) consists of those elements of the domain that map to [0,0, . . . ,0],
the zero vector of the codomain. Hence, for vectors in the kernel, a1 � a2 � 0, but a3, . . . ,an

can have any values. Thus,

ker(L) �
{ [0,0,a3, . . . ,an]∣∣a3, . . . ,an ∈ R

}
.

Notice that ker(L) is a subspace of the domain and that dim(ker(L)) � n � 2, because the stan-
dard basis vectors e3, . . . ,en of R

n span ker(L).
Also, range(L) consists of those elements of the codomain P

2 that are images of domain
elements. Hence, range(L) � { [a1,a2,0, . . . ,0]|a1,a2 ∈ R}. Notice that range(L) is a subspace
of the codomain and that dim(range(L)) � 2, since the standard basis vectors e1 and e2 span
range(L).

Example 2
Differentiation: Consider the linear transformation L: P3 → P2 given by L(ax3 �bx2 �cx �d) �

3ax2 � 2bx � c. Now, ker(L) consists of the polynomials in P3 that map to the zero polynomial
in P2. However, if 3ax2 � 2bx � c � 0, we must have a � b � c � 0. Hence, ker(L) �{

0x3 � 0x2 � 0x � d
∣∣d ∈ R

}
; that is, ker(L) is just the subset of P3 of all constant polynomials.

Notice that ker (L) is a subspace of P3 and that dim(ker(L)) � 1 because the single polynomial
“1” spans ker (L).

1 Some textbooks refer to the kernel of L as the nullspace of L.
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Also, range(L) consists of all polynomials in the codomain P2 of the form 3ax2 � 2bx � c.
Since every polynomial Ax2 � Bx � C of degree 2 or less can be expressed in this form (take
a � A/3, b � B/2, c � C), range(L) is all of P2. Therefore, range(L) is a subspace of P2, and
dim(range(L)) � 3.

Example 3
Rotation: Recall that the linear transformation L: R

2 → R
2 given by

L

([
x
y

])
�

[
cos� �sin �

sin � cos�

][
x
y

]
,

for some (fixed) angle �, represents the counterclockwise rotation of any vector [x,y] with initial
point at the origin through the angle �.

Now, ker(L) consists of all vectors in the domain R
2 that map to [0,0] in the codomain R

2.
However, only [0,0] itself is rotated by L to the zero vector. Hence, ker(L) � {[0,0]}. Notice that
ker(L) is a subspace of R

2, and dim(ker(L)) � 0.
Also, range(L) is all of the codomain R

2 because every nonzero vector v in R
2 is the image

of the vector of the same length at the angle � clockwise from v. Thus, range(L) � R
2, and so,

range(L) is a subspace of R
2 with dim(range(L)) � 2.

Finding the Kernel from the Matrix of a Linear Transformation

Consider the linear transformation L: R
n → R

m given by L(X) � AX, where A is a
(fixed) m � n matrix and X ∈ R

n. Now, ker(L) is the subspace of all vectors X in the
domain R

n that are solutions of the homogeneous system AX � O. If B is the reduced
row echelon form matrix for A, we find a basis for ker(L) by solving for particular
solutions to the system BX � O by systematically setting each independent variable
equal to 1 in turn, while setting the others equal to 0. (You should be familiar with
this process from the Diagonalization Method for finding fundamental eigenvectors
in Section 3.4.) Thus, dim(ker(L)) equals the number of independent variables in the
system BX � O.

We present an example of this technique.

Example 4
Let L:R5 → R

4 be given by L(X) � AX, where

A �

⎡
⎢⎢⎢⎣

8 4 16 32 0
4 2 10 22 �4

�2 �1 �5 �11 7
6 3 15 33 �7

⎤
⎥⎥⎥⎦ .
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To solve for ker(L), we first row reduce A to

B �

⎡
⎢⎢⎢⎣

1 1
2 0 �2 0

0 0 1 3 0

0 0 0 0 1

0 0 0 0 0

⎤
⎥⎥⎥⎦ .

The homogeneous system BX � O has independent variables x2 and x4, and

⎧⎪⎨
⎪⎩

x1 � � 1
2 x2 � 2x4

x3 � � 3x4

x5 � 0

.

We construct two particular solutions, first by setting x2 � 1 and x4 � 0 to obtain v1 �

[� 1
2 ,1,0,0,0], and then setting x2 � 0 and x4 � 1, yielding v2 � [2,0,�3,1,0]. The set

{v1,v2} forms a basis for ker(L), and thus, dim(ker(L)) � 2, the number of independent vari-
ables. The entire subspace ker(L) consists of all linear combinations of the basis vectors;
that is,

ker(L) � {av1 � bv2 |a,b ∈ R} �

{[
�

1

2
a � 2b,a,�3b,b,0

]∣∣∣∣ a,b ∈ R

}
.

Finally, note that we could have eliminated fractions in this basis, just as we did with
fundamental eigenvectors in Section 3.4, by replacing v1 with 2v1 � [�1,2,0,0,0].

Example 4 illustrates the following general technique:

Method for Finding a Basis for the Kernel of a Linear Transformation (Kernel Method)
Let L: R

n → R
m be a linear transformation given by L(X) � AX for some m � n matrix A.

To find a basis for ker(L), perform the following steps:

Step 1: Find B, the reduced row echelon form of A.

Step 2: Solve for one particular solution for each independent variable in the homogeneous
system BX � O. The ith such solution, vi , is found by setting the ith independent
variable equal to 1 and setting all other independent variables equal to 0.

Step 3: The set {v1, . . . ,vk} is a basis for ker(L). (We can replace any vi with cvi , where
c �� 0, to eliminate fractions.)
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The method for finding a basis for ker(L) is practically identical to Step 3 of the
Diagonalization Method of Section 3.4, in which we create a basis of fundamental
eigenvectors for the eigenspace E� for a matrix A. This is to be expected, since E� is
really the kernel of the linear transformation L whose matrix is (�In � A).

Finding the Range from the Matrix of a Linear Transformation

Next,we determine a method for finding a basis for the range of L:Rn → R
m given by

L(X) � AX. In Section 1.5, we saw that AX can be expressed as a linear combination
of the columns of A. In particular, if X � [x1, . . .xn], then AX � x1 (1st column of A)

� · · · � xn (nth column of A). Thus, range(L) is spanned by the set of columns of A;
that is, range(L) � span({columns of A}). Note that L(ei) equals the ith column of A.
Thus, we can also say that {L(e1), . . . ,L(en)} spans range(L).

The fact that the columns of A span range(L) combined with the Independence
Test Method yields the following general technique for finding a basis for the range:

Method for Finding a Basis for the Range of a Linear Transformation (Range Method)
Let L: R

n → R
m be a linear transformation given by L(X) � AX, for some m � n matrix A.

To find a basis for range(L), perform the following steps:

Step 1: Find B, the reduced row echelon form of A.

Step 2: Form the set of those columns of A whose corresponding columns in B have nonzero
pivots. This set is a basis for range(L).

Example 5
Consider the linear transformation L: R

5 → R
4 given in Example 4. After row reducing the matrix

A for L, we obtained a matrix B in reduced row echelon form having nonzero pivots in columns
1,3, and 5. Hence, columns 1, 3, and 5 of A form a basis for range(L). In particular, we get the
basis {[8,4,�2,6], [16,10,�5,15], [0,�4,7,�7]}, and so dim(range(L)) � 3.

From Examples 4 and 5, we see that dim(ker(L)) � dim(range(L)) � 2 � 3 � 5 �
dim(R5) � dim(domain(L)), for the given linear transformation L. We can understand
why this works by examining our methods for calculating bases for the kernel and
range. For ker(L),we get one basis vector for each independent variable,which corre-
sponds to a nonpivot column of A after row reducing. For range(L), we get one basis
vector for each pivot column of A. Together, these account for the total number of
columns of A, which is the dimension of the domain.

The fact that the number of nonzero pivots of A equals the number of nonzero rows
in the reduced row echelon form matrix for A shows that dim(range(L)) � rank (A).
This result is stated in the following theorem,which also holds when bases other than
the standard bases are used (see Exercise 17).
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Theorem 5.9 If L: R
n → R

m is a linear transformation with matrix A with respect to any
bases for R

n and R
m, then

(1) dim(range(L)) � rank (A)

(2) dim(ker(L)) � n � rank (A)

(3) dim(ker(L)) � dim(range(L)) � dim(domain(L)) � n.

The Dimension Theorem

The result in part (3) of Theorem 5.9 generalizes to linear transformations between any
vector spaces V and W , as long as the dimension of the domain is finite. We state this
important theorem here,but postpone its proof until after a discussion of isomorphism
in Section 5.5.An alternate proof of the DimensionTheorem that does not involve the
matrix of the linear transformation is outlined in Exercise 18 of this section.

Theorem 5.10 (Dimension Theorem) If L: V → W is a linear transformation and V is
finite dimensional, then range(L) is finite dimensional, and

dim(ker(L)) � dim(range(L)) � dim(V).

We have already seen that for the linear transformation in Examples 4 and 5, the
dimensions of the kernel and the range add up to the dimension of the domain, as
the Dimension Theorem asserts. Notice the Dimension Theorem holds for the linear
transformations in Examples 1 through 3 as well.

Example 6
Consider L: Mnn → Mnn given by L(A) � A � AT . Now, ker(L) � {A ∈ Mnn | A � AT � On}.
However, A � AT � On implies that A � �AT . Hence, ker(L) is precisely the set of all skew-
symmetric n � n matrices.

The range of L is the set of all matrices B of the form A � AT for some n � n matrix A.

However, if B � A � AT , then BT �
(
A � AT

)T
� AT � A � B, so B is symmetric. Thus,

range(L) ⊆ {symmetric n � n matrices}.
Next, if B is a symmetric n � n matrix, then L(1

2 B) � 1
2 L(B) � 1

2 (B � BT ) � 1
2 (B � B) � B,

and so B ∈ range(L), thus proving {symmetric n � n matrices} ⊆ range(L). Hence, range(L) is
the set of all symmetric n � n matrices.

In Exercise 12 of Section 4.6, we found that dim({skew-symmetric n � n matrices}) �

(n2 � n)/2 and that dim({symmetric n � n matrices}) �
(
n2 � n

)
/2. Notice that the Dimension

Theorem holds here, since dim(ker(L)) � dim(range(L)) � (n2 � n)/2 �
(
n2 � n

)
/2 � n2 �

dim (Mnn).
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Rank of the Transpose

We can use the Range Method to prove the following result:2

Corollary 5.11 If A is any matrix, then rank(A) � rank(AT ).

Proof. Let A be an m � n matrix. Consider the linear transformation L: R
n → R

m with
associated matrix A (using the standard bases). By the Range Method, range(L) is the
span of the column vectors of A. Hence, range(L) is the span of the row vectors of AT ;
that is, range(L) is the row space of AT . Thus, dim(range(L)) � rank(AT ), by the Sim-
plified Span Method. But by Theorem 5.9, dim(range(L)) � rank(A). Hence, rank(A) �
rank(AT ).

Example 7
Let A be the matrix from Examples 4 and 5. We calculated its reduced row echelon form B in
Example 4 and found it has three nonzero rows. Hence, rank(A) � 3. Now,

AT �

⎡
⎢⎢⎢⎢⎢⎢⎣

8 4 �2 6

4 2 �1 3

16 10 �5 15

32 22 �11 33

0 �4 7 �7

⎤
⎥⎥⎥⎥⎥⎥⎦ row reduces to

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 7
5

0 0 1 � 1
5

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

showing that rank(AT ) � 3 as well.

In some textbooks, rank(A) is called the row rank of A and rank(AT ) is called
the column rank of A.Thus,Corollary 5.11 asserts that the row rank of A equals the
column rank of A.

Recall that rank(A)� dim(row space of A). Analogous to the concept of row
space, we define the column space of a matrix A as the span of the columns of A.
In Corollary 5.11, we observed that if L: R

n → R
m with L(X) � AX (using the stan-

dard bases), then range(L) � span({columns of A}) � column space of A, and so
dim(range(L)) � dim(column space of A) � rank(AT ). With this new terminology,
Corollary 5.11 asserts that dim(row space of A) � dim(column space of A). Be careful!
This statement does not imply that these spaces are equal, only that their dimensions
are equal. In fact,unless A is square,they contain vectors of different sizes. Notice that
for the matrix A in Example 7, the row space of A is a subspace of R

5,but the column
space of A is a subspace of R

4.

2 In Exercise 18 of Section 4.6, you were asked to prove Corollary 5.11 by essentially the same method
given here, only using different notation.
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New Vocabulary

column rank (of a matrix)
column space (of a matrix)
Dimension Theorem
kernel (of a linear transformation)

Kernel Method
range (of a linear transformation)
Range Method
row rank (of a matrix)

Highlights

■ The kernel of a linear transformation consists of all vectors of the domain that
map to the zero vector of the codomain. The kernel is always a subspace of the
domain.

■ The range of a linear transformation consists of all vectors of the codomain that
are images of vectors in the domain. The range is always a subspace of the
codomain.

■ If A is the matrix (with respect to any bases) for a linear transformation L:Rn →
R

m, then dim(ker(L)) � n � rank (A) and dim(range(L)) � rank (A).

■ Kernel Method:A basis for the kernel of a linear transformation L(X) � AX is
obtained from the solution set of BX � O by letting each independent variable
in turn equal 1 and all other independent variables equal 0, where B is the
reduced row echelon form of A.

■ Range Method: A basis for the range of a linear transformation L(X) � AX is
obtained by selecting the columns of A corresponding to pivot columns in the
reduced row echelon form matrix B for A.

■ Dimension Theorem: If L: V → W is a linear transformation and V is finite
dimensional, then dim(ker(L)) � dim(range(L)) � dim(V).

■ The rank of any matrix (� row rank) is equal to the rank of its transpose
(� column rank).

EXERCISES FOR SECTION 5.3
1. Let L: R3 → R

3 be given by

L

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎣ 5 1 �1

�3 0 1
1 �1 �1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ .

�(a) Is [1,�2,3] in ker(L)? Why or why not?

(b) Is [2,�1,4] in ker(L)? Why or why not?
�(c) Is [2,�1,4] in range(L)? Why or why not?

(d) Is [�16,12,�8] in range(L)? Why or why not?
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2. Let L: P3 →P3 be given by L(ax3 �bx2 �cx �d) � 2cx3 �(a�b)x �(d �c).
�(a) Is x3 � 5x2 � 3x � 6 in ker(L)? Why or why not?

(b) Is 4x3 � 4x2 in ker(L)? Why or why not?
�(c) Is 8x3 � x � 1 in range(L)? Why or why not?

(d) Is 4x3 � 3x2 � 7 in range(L)? Why or why not?

3. For each of the following linear transformations L:V → W ,find a basis for ker(L)

and a basis for range(L). Verify that dim(ker(L)) � dim(range(L)) � dim(V).
�(a) L: R3 → R

3 given by

L

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎣ 1 �1 5

�2 3 �13
3 �3 15

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦

(b) L: R3 → R
4 given by

L

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎢⎢⎣

4 �2 8
7 1 5

�2 �1 0
3 �2 7

⎤
⎥⎥⎦
⎡
⎣x1

x2

x3

⎤
⎦

(c) L: R3 → R
2 given by

L

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠�

[
3 2 11
2 1 8

]⎡⎣x1

x2

x3

⎤
⎦

�(d) L: R4 → R
5 given by

L

⎛
⎜⎜⎝
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦
⎞
⎟⎟⎠�

⎡
⎢⎢⎢⎢⎣

�14 �8 �10 2
�4 �1 1 �2
�6 2 12 �10

3 �7 �24 17
4 2 2 0

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦

4. For each of the following linear transformations L:V → W , find a basis for ker(L)

and a basis for range(L), and verify that dim(ker(L)) � dim(range(L)) � dim(V):
�(a) L: R3 → R

2 given by L([x1,x2,x3]) � [0,x2]
(b) L: R2 → R

3 given by L([x1,x2]) � [x1, x1 � x2, x2]
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(c) L:M22 → M32 given by L

([
a11 a12

a21 a22

])
�

⎡
⎣ 0 �a12

�a21 0
0 0

⎤
⎦

�(d) L:P4 → P2 given by L(ax4 � bx3 � cx2 � dx � e) � cx2 � dx � e

(e) L:P2 → P3 given by L(ax2 � bx � c) � cx3 � bx2 � ax
�(f) L: R3 → R

3 given by L([x1,x2,x3]) � [x1, 0, x1 � x2 � x3]
�(g) L:M22 → M22 given by L(A) � AT

(h) L:M33 → M33 given by L(A) � A � AT

�(i) L:P2 → R
2 given by L

(
p
)

�
[
p (1) ,p′ (1)

]
(j) L:P4 → R

3 given by L(p) � [p(�1),p(0),p(1)]
5. (a) Suppose that L: V → W is the linear transformation given by L(v) � 0W ,

for all v ∈ V . What is ker(L)? What is range(L)?

(b) Suppose that L: V → V is the linear transformation given by L(v) � v, for
all v ∈ V . What is ker(L)? What is range(L)?

�6. Consider the mapping L:M33 → R given by L(A) � trace(A) (see Exercise 14
in Section 1.4). Show that L is a linear transformation. What is ker(L)? What is
range(L)? Calculate dim(ker(L)) and dim(range(L)).

7. Let V be a vector space with fixed basis B � {v1, . . . ,vn}. Define L: V → V by
L(v1) � v2, L(v2) � v3, . . . , L(vn�1) � vn, L(vn) � v1. Find range(L). What is
ker(L)?

�8. Consider L: P2 → P4 given by L(p) � x2p. What is ker(L)? What is range(L)?
Verify that dim(ker(L)) � dim(range(L)) � dim(P2).

9. Consider L: P4 → P2 given by L(p) � p′′. What is ker(L)? What is range(L)?
Verify that dim(ker(L)) � dim(range(L)) � dim(P4).

�10. Consider L: Pn → Pn given by L(p) � p(k) (the kth derivative of p), where
k � n. What is dim(ker(L))? What is dim(range(L))? What happens when
k > n?

11. Let a be a fixed real number. Consider L:Pn → R given by L(p(x)) � p(a) (that
is, the evaluation of p at x � a). (Recall from Exercise 18 in Section 5.1 that L
is a linear transformation.) Show that

{
x � a, x2 � a2, . . . , xn � an

}
is a basis

for ker(L). (Hint:What is range(L)?)

�12. Suppose that L: R
n → R

n is a linear operator given by L(X) � AX, where
|A| �� 0. What is ker(L)? What is range(L)?

13. Let V be a finite dimensional vector space,and let L:V → V be a linear operator.
Show that ker(L) � {0V } if and only if range(L) � V .
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14. Let L:V → W be a linear transformation. Prove directly that ker(L) is a subspace
of V and that range(L) is a subspace of W using Theorem 4.2, that is, without
invoking Theorem 5.8.

15. Let L1:V → W and L2:W → X be linear transformations.

(a) Show that ker(L1) ⊆ ker(L2 ◦ L1).

(b) Show that range(L2 ◦ L1) ⊆ range(L2).

(c) If V is finite dimensional,prove that dim(range(L2 ◦ L1)) � dim(range(L1)).

�16. Give an example of a linear operator L: R2 → R
2 such that ker(L) � range(L).

17. Let L: R
n → R

m be a linear transformation with m � n matrix A for L with
respect to the standard bases and m � n matrix B for L with respect to bases
B and C .

(a) Prove that rank(A) � rank(B). (Hint: Use Exercise 16 in the Review
Exercises of Chapter 2.)

(b) Use part (a) to finish the proof of Theorem 5.9. (Hint: Notice that Theo-
rem 5.9 allows any bases to be used for R

n and R
m.You can assume, from

the remarks beforeTheorem 5.9,that the theorem is true when the standard
bases are used for R

n and R
m.)

18. This exercise outlines an alternate proof of the DimensionTheorem. Let L:V →
W be a linear transformation with V finite dimensional. Figure 5.10 illustrates
the relationships among the vectors referenced throughout this exercise.

(a) Let {k1, . . . ,ks} be a basis for ker(L). Show that there exist vectors q1, . . . ,qt

such that {k1, . . . ,ks,q1, . . . ,qt} is a basis for V . Express dim(V) in terms of
s and t .

V

ker (L)
q1 L(q1)

L(q2)
L(q3)

L(qt)
k1 k2 k3 ks

q2
q3

qt

W

0W

FIGURE 5.10

Images of basis elements in Exercise 18
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(b) Use part (a) to show that for every v ∈ V , there exist scalars b1, . . . ,bt such
that L(v) � b1L(q1) � · · · � btL(qt).

(c) Use part (b) to show that {L(q1), . . . ,L(qt)} spans range(L). Conclude that
dim(range(L)) � t , and, hence, is finite.

(d) Suppose that c1L(q1) � · · · � ctL(qt) � 0W . Prove that c1q1 � · · · � ctqt ∈
ker(L).

(e) Use part (d) to show that there are scalars d1, . . . ,ds such that c1q1 � · · · �
ctqt � d1k1 � · · · � dsks.

(f) Use part (e) and the fact that {k1, . . . ,ks,q1, . . . ,qt} is a basis for V to prove
that c1 � c2 � · · · � ct � d1 � · · · � ds � 0.

(g) Use parts (d) and (f) to conclude that {L(q1), . . . ,L(qt)} is linearly indepen-
dent.

(h) Use parts (c) and (g) to prove that {L(q1), . . . ,L(qt)} is a basis for range(L).

(i) Conclude that dim(ker(L)) � dim(range(L)) � dim(V).

19. Prove the following corollary of the Dimension Theorem: Let L: V → W be a
linear transformation with V finite dimensional.Then dim(ker(L)) � dim(V) and
dim(range(L)) � dim(V).

�20. True or False:

(a) If L: V → W is a linear transformation, then ker(L) � {L(v) |v ∈ V}.
(b) If L: V → W is a linear transformation, then range(L) is a subspace of V .

(c) If L: V → W is a linear transformation and dim(V) � n, then dim(ker(L)) �
n � dim(range(L)).

(d) If L: V → W is a linear transformation and dim(V) � 5 and dim(W) � 3,
then the Dimension Theorem implies that dim(ker(L)) � 2.

(e) If L: R
n → R

m is a linear transformation and L(X) � AX, then dim(ker(L))

equals the number of nonpivot columns in the reduced row echelon form
matrix for A.

(f) If L: R
n → R

m is a linear transformation and L(X) � AX, then
dim(range(L)) � n � rank(A).

(g) If A is a 5 � 5 matrix, and rank (A) � 2, then rank
(
AT
)

� 3.

(h) If A is any matrix, then the row space of A equals the column space of A.
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5.4 ONE-TO-ONE AND ONTO LINEAR TRANSFORMATIONS
The kernel and the range of a linear transformation are related to the function proper-
ties one-to-one and onto. Consequently, in this section we study linear transformations
that are one-to-one or onto.

One-to-One and Onto Linear Transformations

One-to-one functions and onto functions are defined and discussed in Appendix B. In
particular,Appendix B contains the usual methods for proving that a given function
is, or is not, one-to-one or onto. Now, we are interested primarily in linear transforma-
tions, so we restate the definitions of one-to-one and onto specifically as they apply
to this type of function.

Definition Let L: V → W be a linear transformation.

(1) L is one-to-one if and only if distinct vectors in V have different images in
W . That is, L is one-to-one if and only if, for all v1,v2 ∈ V , L(v1) � L(v2)

implies v1 � v2.

(2) L is onto if and only if every vector in the codomain W is the image of
some vector in the domain V . That is, L is onto if and only if, for every
w ∈ W , there is some v ∈ V such that L(v) � w.

Notice that the two descriptions of a one-to-one linear transformation given in this
definition are really contrapositives of each other.

Example 1
Rotation: Recall the rotation linear operator L: R

2 → R
2 from Example 9 in Section 5.1 given by

L(v) � Av, where A �

[
cos� �sin �

sin � cos�

]
. We will show that L is both one-to-one and onto.

To show that L is one-to-one, we take any two arbitrary vectors v1 and v2 in the domain R
2,

assume that L(v1) � L(v2), and prove that v1 � v2. Now, if L(v1) � L(v2), then Av1 � Av2.
Because A is nonsingular, we can multiply both sides on the left by A�1 to obtain v1 � v2.
Hence, L is one-to-one.

To show that L is onto, we must take any arbitrary vector w in the codomain R
2 and show

that there is some vector v in the domain R
2 that maps to w. Recall that multiplication by A�1

undoes the action of multiplication by A, and so it must represent a clockwise rotation through
the angle �. Hence, we can find a pre-image for w by rotating it clockwise through the angle �;
that is, consider v � A�1w ∈ R

2. When we apply L to v, we rotate it counterclockwise through
the same angle �: L(v) � A(A�1w) � w, thus obtaining the original vector w. Since v is in the
domain and v maps to w under L, L is onto.
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Example 2
Differentiation: Consider the linear transformation L: P3 → P2 given by L(p) � p′. We will show
that L is onto but not one-to-one.

To show that L is not one-to-one, we must find two different vectors p1 and p2 in the domain
P3 that have the same image. Consider p1 � x � 1 and p2 � x � 2. Since L(p1) � L(p2) � 1,
L is not one-to-one.

To show that L is onto, we must take an arbitrary vector q in P2 and find some vector p
in P3 such that L(p) � q. Consider the vector p �

∫
q(x)dx with zero constant term. Because

L(p) � q, we see that L is onto.

If in Example 2 we had used P3 for the codomain instead of P2, the linear trans-
formation would not have been onto because x3 would have no pre-image (why?).
This provides an example of a linear transformation that is neither one-to-one nor onto.
Also,Exercise 6 illustrates a linear transformation that is one-to-one but not onto.These
examples, together with Examples 1 and 2, show that the concepts of one-to-one and
onto are independent of each other; that is, there are linear transformations that have
either property with or without the other.

Theorem B.1 in Appendix B shows that the composition of one-to-one linear trans-
formations is one-to-one,and similarly, the composition of onto linear transformations
is onto.

Kernel and Range

The next theorem gives an alternate way of characterizing one-to-one linear transfor-
mations and onto linear transformations.

Theorem 5.12 Let V and W be vector spaces, and let L:V → W be a linear trans-
formation. Then:

(1) L is one-to-one if and only if ker(L) � {0V } (or, equivalently, if and only if
dim(ker(L)) � 0), and

(2) If W is finite dimensional, then L is onto if and only if dim(range(L)) � dim(W).

Thus, a linear transformation whose kernel contains a nonzero vector cannot be
one-to-one.

Proof. First suppose that L is one-to-one, and let v ∈ ker(L). We must show that v � 0V .
Now, L(v) � 0W . However, by Theorem 5.1, L(0V ) � 0W . Because L(v) � L(0V ) and L is
one-to-one, we must have v � 0V .

Conversely, suppose that ker(L) � {0V }. We must show that L is one-to-one. Let v1,v2 ∈
V, with L(v1) � L(v2). We must show that v1 � v2. Now, L(v1) � L(v2) � 0W , implying
that L(v1 � v2) � 0W . Hence, v1 � v2 ∈ ker(L), by definition of the kernel. Since ker(L) �
{0V }, v1 � v2 � 0V and so v1 � v2.
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Finally, note that, by definition, L is onto if and only if range(L) � W, and therefore
part (2) of the theorem follows immediately from Theorem 4.16.

Example 3

Consider the linear transformation L: M22 → M23 given by L

([
a b
c d

])
�[

a � b 0 c � d
c � d a � b 0

]
. If

[
a b
c d

]
∈ ker(L), then a � b � c � d � c � d � a � b � 0. Solving

these equations yields a � b � c � d � 0, and so ker(L) contains only the zero matrix

[
0 0
0 0

]
;

that is, dim(ker(L)) � 0. Thus, by part (1) of Theorem 5.12, L is one-to-one. However, by the
Dimension Theorem, dim(range(L)) � dim(M22) � dim(ker(L)) � dim(M22) � 4. Hence, by

part (2) of Theorem 5.12, L is not onto. In particular,

[
0 1 0
0 0 0

]
/∈ range(L).

On the other hand, consider M : M23 → M22 given by M

([
a b c
d e f

])
�[

a � b a � c
d � e d � f

]
. It is easy to see that M is onto, since M

([
0 b c
0 e f

])
�

[
b c
e f

]
, and thus

every 2 � 2 matrix is in range(M). Thus, by part (2) of Theorem 5.12, dim(range(M)) �

dim(M22) � 4. Then, by the Dimension Theorem, ker(M) � dim(M23) � dim(range(M)) �

6 � 4 � 2. Hence, by part (1) of Theorem 5.12, M is not one-to-one. In particular,[
1 �1 �1
1 �1 �1

]
∈ ker(L).

Spanning and Linear Independence

The next theorem shows that the one-to-one property is related to linear independence,
while the onto property is related to spanning.

Theorem 5.13 Let V and W be vector spaces, and let L: V → W be a linear trans-
formation. Then:

(1) If L is one-to-one, and T is a linearly independent subset of V, then L(T ) is
linearly independent in W.

(2) If L is onto, and S spans V, then L(S) spans W.

Proof. Suppose that L is one-to-one, and T is a linearly independent subset of V. To
prove that L(T ) is linearly independent in W, it is enough to show that any finite
subset of L(T ) is linearly independent. Suppose {L(x1), . . . ,L(xn)} is a finite subset
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of L(T ), for vectors x1, . . . ,xn ∈ T , and suppose b1L(x1) � · · · � bnL(xn) � 0W . Then,
L(b1x1 � · · · � bnxn) � 0W , implying that b1x1 � · · · � bnxn ∈ ker(L). But since L is one-
to-one, Theorem 5.12 tells us that ker(L) � {0V }. Hence, b1x1 � · · · � bnxn � 0V . Then,
because the vectors in T are linearly independent, b1 � b2 � · · · � bn � 0. Therefore,
{L(x1), . . . ,L(xn)} is linearly independent. Hence, L(T ) is linearly independent.

Now suppose that L is onto, and S spans V. To prove that L(S) spans W, we must
show that any vector w ∈ W can be expressed as a linear combination of vectors in
L(S). Since L is onto, there is a v ∈ V such that L(v) � w. Since S spans V, there
are scalars a1, . . . ,an and vectors v1, . . . ,vn ∈ S such that v � a1v1 � · · · � anvn. Thus,
w � L(v) � L(a1v1 � · · · � anvn) � a1L(v1) � · · · � anL(vn). Hence, L(S) spans W.

An almost identical proof gives the following useful generalization of part (2) ofThe-
orem 5.13: For any linear transformation L:V → W , and any subset S of V , L(S) spans
the subspace L(span(S)) of W . In particular, if S spans V , then L(S) spans range(L).
(See Exercise 8.)

Example 4
Consider the linear transformation L:P2 → P3 given by L(ax2 � bx � c) � bx3 � cx2 � ax. It is
easy to see that ker(L) � {0} since L(ax2 � bx � c) � 0x3 � 0x2 � 0x � 0 only if a � b � c � 0,
and so L is one-to-one by Theorem 5.12. Consider the linearly independent set T � {x2 � x,
x � 1} in P2. Notice that L(T ) � {x3 � x, x3 � x2}, and that L(T ) is linearly independent, as
predicted by part (1) of Theorem 5.13.

Next, let W � {[x,0,z]} be the xz-plane in R
3. Clearly, dim(W) = 2. Consider L:R3 → W,

where L is the projection of R
3 onto the xz-plane; that is, L([x,y,z]) � [x,0,z]. It is easy to

check that S �
{
[2,�1,3] , [1,�2,0] , [4,3,�1]

}
spans R

3 using the Simplified Span Method.
Part (2) of Theorem 5.13 then asserts that L(S) �

{
[2,0,3] , [1,0,0] , [4,0,�1]

}
spans W. In fact,

{[2,0,3] , [1,0,0]} alone spans W, since dim(span({[2,0,3] , [1,0,0]})) � 2 � dim(W).

In Section 5.5, we will consider isomorphisms, which are linear transformations
that are simultaneously one-to-one and onto. We will see that such functions faithfully
carry vector space properties from the domain to the codomain.

New Vocabulary

one-to-one linear transformation onto linear transformation

Highlights

■ A linear transformation is one-to-one if no two distinct vectors of the domain
map to the same image in the codomain.

■ A linear transformation L: V → W is one-to-one if and only if ker(L) � {0V }
(or, equivalently, if and only if dim(ker(L)) � 0).

■ If a linear transformation is one-to-one, then the image of every linearly
independent subset of the domain is linearly independent.
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■ A linear transformation is onto if every vector in the codomain is the image of
some vector from the domain.

■ A linear transformation L:V → W is onto if and only if range(L) � W (or, equiv-
alently, if and only if dim(range(L)) � dim(W) when W is finite dimensional).

■ If a linear transformation is onto, then the image of every spanning set for the
domain spans the codomain.

EXERCISES FOR SECTION 5.4
1. Which of the following linear transformations are one-to-one? Which are onto?

Justify your answers without using row reduction.
�(a) L: R

3 → R
4 given by L([x,y,z]) � [y,z,�y,0]

(b) L: R
3 → R

2 given by L([x,y,z]) � [x � y, y � z]
�(c) L: R

3 → R
3 given by L([x,y,z]) � [2x, x � y � z,�y]

(d) L: P3 → P2 given by L(ax3 � bx2 � cx � d) � ax2 � bx � c
�(e) L: P2 → P2 given by L(ax2 � bx � c) � (a � b)x2 � (b � c)x � (a � c)

(f ) L: M22 → M22 given by L

([
a b
c d

])
�

[
d b � c

b � c a

]

�(g) L:M23 → M22 given by L

([
a b c
d e f

])
�

[
a �c
2e d � f

]

�(h) L: P2 → M22 given by L(ax2 � bx � c) �

[
a � c 0
b � c �3a

]
2. Which of the following linear transformations are one-to-one? Which are onto?

Justify your answers by using row reduction to determine the dimensions of
the kernel and range.

�(a) L: R
2 → R

2 given by L

([
x1

x2

])
�

[
�4 �3

2 2

][
x1

x2

]

�(b) L: R
2 → R

3 given by L

([
x1

x2

])
�

⎡
⎣�3 4

�6 9
7 �8

⎤
⎦[x1

x2

]

�(c) L: R
3 → R

3 given by L

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎣�7 4 �2

16 �7 2
4 �3 2

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦
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(d) L: R
4 → R

3 given by L

⎛
⎜⎜⎝
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦
⎞
⎟⎟⎠�

⎡
⎣�5 3 1 18

�2 1 1 6
�7 3 4 19

⎤
⎦
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦

3. In each of the following cases, the matrix for a linear transformation with
respect to some ordered bases for the domain and codomain is given. Which
of these linear transformations are one-to-one? Which are onto? Justify your
answers by using row reduction to determine the dimensions of the kernel and
range.

�(a) L: P2 → P2 having matrix

⎡
⎣ 1 �3 0

�4 13 �1
8 �25 2

⎤
⎦

(b) L: M22 → M22 having matrix

⎡
⎢⎢⎣

6 �9 2 8
10 �6 12 4

�3 3 �4 �4
8 �9 9 11

⎤
⎥⎥⎦

�(c) L: M22 → P3 having matrix

⎡
⎢⎢⎣

2 3 �1 1
5 2 �4 7
1 7 1 �4

�2 19 7 �19

⎤
⎥⎥⎦

4. Suppose that m > n.

(a) Show there is no onto linear transformation from R
n to R

m.

(b) Show there is no one-to-one linear transformation from R
m to R

n.

5. Let A be a fixed n � n matrix, and consider L: Mnn → Mnn given by L(B) �
AB � BA.

(a) Show that L is not one-to-one. (Hint: Consider L(In).)

(b) Use part (a) to show that L is not onto.

6. Define L: U3 → M33 by L(A) � 1
2 (A � AT ). Prove that L is one-to-one but is

not onto.

7. Let L: V → W be a linear transformation between vector spaces. Suppose
that for every linearly independent set T in V ,L(T ) is linearly independent
in W . Prove that L is one-to-one. (Hint: Prove ker(L) � {0V } using a proof by
contradiction.)

8. Let L:V → W be a linear transformation between vector spaces, and let S be a
subset of V .

(a) Prove that L(S) spans the subspace L(span(S)).
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(b) Show that if S spans V , then L(S) spans range(L).

(c) Show that if L(S) spans W , then L is onto.

�9. True or False:

(a) A linear transformation L:V → W is one-to-one if for all v1,v2 ∈ V ,v1 � v2

implies L(v1) � L(v2).

(b) A linear transformation L: V → W is onto if for all v ∈ V , there is some
w ∈ W such that L(v) � w.

(c) A linear transformation L:V → W is one-to-one if ker(L) contains no vectors
other than 0V .

(d) If L is a linear transformation and S spans the domain of L, then L(S) spans
the range of L.

(e) Suppose V is a finite dimensional vector space. A linear transformation
L:V → W is not one-to-one if dim(ker(L)) �� 0.

(f ) Suppose W is a finite dimensional vector space. A linear transformation
L:V → W is not onto if dim(range(L)) < dim(W).

(f) If L is a linear transformation and T is a linearly independent subset of the
domain of L, then L(T ) is linearly independent.

(g) If L is a linear transformation L: V → W , and S is a subset of V such that
L(S) spans W , then S spans V .

5.5 ISOMORPHISM
In this section, we examine methods for determining whether two vector spaces
are equivalent, or isomorphic. Isomorphism is important because if certain algebraic
results are true in one of two isomorphic vector spaces, corresponding results hold
true in the other as well. It is the concept of isomorphism that has allowed us to apply
our techniques and formal methods to vector spaces other than R

n.

Isomorphisms: Invertible Linear Transformations

We restate here the definition fromAppendix B for the inverse of a function as it applies
to linear transformations.

Definition Let L: V → W be a linear transformation. Then L is an invertible
linear transformation if and only if there is a function M : W → V such that
(M ◦ L)(v) � v, for all v ∈ V , and (L ◦ M)(w) � w, for all w ∈ W . Such a function
M is called an inverse of L.
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If the inverse M of L:V → W exists, then it is unique byTheorem B.3 and is usually
denoted by L�1:W → V .

Definition A linear transformation L: V → W that is both one-to-one and onto is
called an isomorphism from V to W .

The next result shows that the previous two definitions actually refer to the same
class of linear transformations.

Theorem 5.14 Let L: V → W be a linear transformation. Then L is an isomorphism if
and only if L is an invertible linear transformation. Moreover, if L is invertible, then L�1

is also a linear transformation.

Notice that Theorem 5.14 also asserts that whenever L is an isomorphism, L�1 is
an isomorphism as well because L�1 is an invertible linear transformation (with L as
its inverse).

Proof. The “if and only if” part of Theorem 5.14 follows directly from Theorem B.2. Thus,
we only need to prove the last assertion in Theorem 5.14. That is, suppose L: V → W is
invertible (and thus, an isomorphism) with inverse L�1. We need to prove L�1 is a linear
transformation. To do this, we must show both of the following properties hold:

(1) L�1(w1 � w2) � L�1(w1) � L�1(w2), for all w1,w2 ∈ W
(2) L�1(cw) � cL�1(w), for all c ∈ R, and for all w ∈ W.

Property (1): Because L is an isomorphism, L is one-to-one. Hence, if we can show that
L(L�1(w1 � w2)) � L(L�1(w1) � L�1(w2)), we will be done. But,

L(L�1(w1) � L�1(w2)) � L(L�1(w1)) � L(L�1(w2))

� w1 � w2

� L(L�1(w1 � w2)).

Property (2): Again, because L is an isomorphism, L is one-to-one. Hence, if we can
show that L(L�1(cw)) � L(cL�1(w)), we will be done. But,

L(cL�1(w)) � cL(L�1(w))

� cw

� L(L�1(cw)).

Because both properties (1) and (2) hold, L�1 is a linear transformation.
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Example 1
Recall the rotation linear operator L: R

2 → R
2 with

L

([
x
y

])
�

[
cos� �sin �

sin � cos�

][
x
y

]

given in Example 9 in Section 5.1. In Example 1 in Section 5.4, we proved that L is both one-
to-one and onto. Hence, L is an isomorphism and has an inverse, L�1. Because L represents a
counterclockwise rotation of vectors through the angle �, then L�1 must represent a clockwise
rotation through the angle �, as we saw in Example 1 of Section 5.4. Equivalently, L�1 can be
thought of as a counterclockwise rotation through the angle ��. Thus,

L�1

([
x
y

])
�

[
cos(��) �sin (��)

sin (��) cos(��)

][
x
y

]
�

[
cos� sin �

�sin � cos�

][
x
y

]
.

Of course, L�1 is also an isomorphism.

The next theorem gives a simple method for determining whether a linear
transformation between finite dimensional vector spaces is an isomorphism.

Theorem 5.15 Let V and W both be nontrivial finite dimensional vector spaces with
ordered bases B and C, respectively, and let L: V → W be a linear transformation.
Then L is an isomorphism if and only if the matrix representation ABC for L with respect
to B and C is nonsingular.

To prove one half of Theorem 5.15, let ABC be the matrix for L with respect to B
and C , and let DCB be the matrix for L�1 with respect to C and B. Theorem 5.7 then
shows that DCBABC � In, with n � dim(V), and ABCDCB � Ik, with k � dim(W). By
Exercise 21 in Section 2.4,n � k,and (ABC)�1 � DCB,so ABC is nonsingular.The proof
of the converse is straightforward, and you are asked to give the details in Exercise 8.
Notice, in particular, that the matrix for any isomorphism must be a square matrix.

Example 2
Consider L: R

3 → R
3 given by L(v) � Av, where

A �

⎡
⎢⎣1 0 3

0 1 3
0 0 1

⎤
⎥⎦ .

Now, A is nonsingular (|A| � 1 �� 0). Hence, by Theorem 5.15, L is an isomorphism. Geometri-
cally, L represents a shear in the z-direction (see Table 5.1).
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Theorem B.4 in Appendix B shows that the composition of isomorphisms results
in an isomorphism. In particular, the inverse of the composition L2 ◦ L1 is L�1

1 ◦ L�1
2 .

That is, the transformations must be undone in reverse order to arrive at the correct
inverse. (Compare this with part (3) of Theorem 2.11 for matrix multiplication.)

When an isomorphism exists between two vector spaces, properties from the
domain are carried over to the codomain by the isomorphism. In particular, the fol-
lowing theorem,which follows immediately fromTheorem 5.13, shows that spanning
sets map to spanning sets, and linearly independent sets map to linearly independent
sets.

Theorem 5.16 Suppose L:V → W is an isomorphism. Let S span V and let T be a
linearly independent subset of V. Then L(S) spans W and L(T ) is linearly independent.

Isomorphic Vector Spaces

Definition Let V and W be vector spaces. Then V is isomorphic to W , denoted
V ∼� W , if and only if there exists an isomorphism L:V → W .

If V ∼� W ,there is some isomorphism L:V →W .Then byTheorem 5.14, L�1:W →V
is also an isomorphism,so W ∼� V . Hence,we usually speak of such V and W as being
isomorphic to each other.

Also notice that if V ∼� W and W ∼� X , then there are isomorphisms L1: V → W
and L2: W → X . But then L2 ◦ L1: V → X is an isomorphism, and so V ∼� X . In other
words,two vector spaces such as V and X that are both isomorphic to the same vector
space W are isomorphic to each other.

Example 3
Consider L1: R

4 → P3 given by L1([a,b,c,d]) � ax3 � bx2 � cx � d and L2: M22 → P3 given

by L2

([
a b
c d

])
� ax3 � bx2 � cx � d. L1 and L2 are certainly both isomorphisms. Hence,

R
4 ∼� P3 and M22

∼� P3. Thus, the composition L�1
2 ◦ L1: R

4 → M22 is also an isomorphism,
and so R

4 ∼� M22. Notice that all of these vector spaces have dimension 4.

Next,we show that finite dimensional vector spaces V and W must have the same
dimension for an isomorphism to exist between them.

Theorem 5.17 Suppose V ∼� W and V is finite dimensional. Then W is finite dimen-
sional and dim(V) � dim(W).
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Proof. Since V ∼� W, there is an isomorphism L: V → W. Let dim(V) � n, and let B �
{v1, . . . ,vn} be a basis for V. By Theorem 5.16, L(B) � {L(v1), . . . ,L(vn)} both spans W
and is linearly independent, and so must be a basis for W. Also, because L is a one-to-one
function, |L(B)| � |B| � n. Therefore, dim(V) � dim(W).

Theorem 5.17 implies that there is no possible isomorphism from, say, R
3 to P4

or from M22 to R
3, because the dimensions of the spaces do not agree. Notice that

Theorem 5.17 gives another confirmation of the fact that any matrix for an isomor-
phism must be square.

Isomorphism of n-Dimensional Vector Spaces

Example 3 hints that any two finite dimensional vector spaces of the same dimension
are isomorphic. This result, which is one of the most important in all linear algebra, is
a corollary of the next theorem.

Theorem 5.18 If V is any n-dimensional vector space, then V ∼� R
n.

Proof. Suppose that V is a vector space with dim(V) � n. If we can find an isomorphism
L: V → R

n, then V ∼� R
n, and we will be done. Let B � (v1, . . . ,vn) be an ordered basis

for V. Consider the mapping L(v) � [v]B, for all v ∈ V. Now, L is a linear transformation by
Example 4 in Section 5.1. Also,

v ∈ ker(L) ⇔ [v]B � [0, . . . ,0] ⇔ v � 0v1 � · · · � 0vn ⇔ v � 0.

Hence, ker(L) � {0V }, and L is one-to-one.
If a � [a1, . . . ,an] ∈ R

n, then L(a1v1 � · · · � anvn) � [a1, . . . ,an], showing that a ∈
range(L). Hence, L is onto, and so L is an isomorphism.

In particular, Theorem 5.18 tells us that Pn
∼� R

n�1 and that Mmn
∼� R

mn. Also,
the proof of Theorem 5.18 illustrates that coordinatization of vectors in an n-
dimensional vector space V automatically gives an isomorphism of V with R

n.
By the remarks before Example 3,Theorem 5.18 implies the following converse of

Theorem 5.17:

Corollary 5.19 Any two n-dimensional vector spaces V and W are isomorphic. That
is, if dim(V) � dim(W), then V ∼� W.

For example, suppose that V and W are both vector spaces with dim(V) �
dim(W) � 47. Then by Corollary 5.19,V ∼� W , and by Theorem 5.18,V ∼� W ∼� R

47.
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Isomorphism and the Methods

We now have the means to justify the use of the Simplified Span Method and the
Independence Test Method on vector spaces other than R

n. Suppose V ∼� R
n. By

using the coordinatization isomorphism or its inverse as the linear transformation L in
Theorem 5.16, we see that spanning sets in V are mapped to spanning sets in R

n, and
vice versa. Similarly,linearly independent sets in V are mapped to linearly independent
sets in R

n, and vice versa. This is illustrated in the following example.

Example 4
Consider the subset S � {x3 � 2x2 � x � 2, x3 � x2 � x � 1, x3 � 5x2 � x � 5, x3 � x2

� x � 1} of P3. We use the coordinatization isomorphism L:P3 → R
4 with respect to the stan-

dard basis of P3 to obtain L(S) � {[1, �2, 1, �2], [1, 1, 1, 1], [1, �5, 1, �5], [1, �1, �1, 1]}, a
subset of R

4 corresponding to S. Row reducing⎡
⎢⎢⎢⎣

1 �2 1 �2
1 1 1 1
1 �5 1 �5
1 �1 �1 1

⎤
⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎣

1 0 0 1
0 1 0 1
0 0 1 �1
0 0 0 0

⎤
⎥⎥⎥⎦

shows, by the Simplified Span Method, that span ({[1,�2,1,�2], [1,1,1,1], [1,�5,1,�5],
[1,�1,�1,1]}) � span ({[1,0,0,1], [0,1,0,1], [0,0,1,�1]}). Since L�1 is an isomorphism,
Theorem 5.16 shows that L�1 ({[1,0,0,1], [0,1,0,1], [0,0,1,�1]}) � {x3 � 1, x2 � 1, x � 1}
spans the same subspace of P3 that S does. That is, span({x3 � 1, x2 � 1, x � 1}) � span(S).

Similarly, row reducing⎡
⎢⎢⎢⎣

1 1 1 1
�2 1 �5 �1

1 1 1 �1
�2 1 �5 1

⎤
⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎣

1 0 2 0
0 1 �1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎦

shows, by the Independence Test Method, that {[1,�2,1,�2], [1,1,1,1], [1,�1,�1,1]} is a
linearly independent subset of R4, and that [1,�5,1,�5] � 2[1,�2,1,�2] � [1,1,1,1] �

0[1,�1,�1,1]. Since L�1 is an isomorphism, Theorem 5.16 shows us that L�1({[1,�2,1,�2],
[1,1,1,1], [1,�1,�1,1]})�

{
x3 � 2x2 � x � 2,x3 � x2 � x � 1,x3 � x2 � x � 1

}
is a linearly

independent subset of P3. The fact that L�1 is a linear transformation also assures us
that x3 � 5x2 � x � 5 � 2

(
x3 � 2x2 � x � 2

)
�
(
x3 � x2 � x � 1

)
� 0

(
x3 � x2 � x � 1

)
.

In addition to preserving dimension, spanning, and linear independence, isomor-
phisms keep intact most other properties of vector spaces and the linear transforma-
tions between them. In particular,the next theorem shows that when we coordinatize
the domain and codomain of a linear transformation, the kernel and the range are
preserved.
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Theorem 5.20 Let L: V → W be a linear transformation between nontrivial finite
dimensional vector spaces, and let L1: V → R

n and L2: W → R
m be coordinatization

isomorphisms with respect to some ordered bases B and C for V and W, respectively.
Let M � L2 ◦ L ◦ L�1

1 : R
n → R

m, so that M([v]B) � [L(v)]C . Then,

(1) L�1
1 (ker (M)) � ker (L) ⊆ V ,

(2) L�1
2 (range(M)) � range(L) ⊆ W ,

(3) dim(ker (M)) � dim(ker (L)), and

(4) dim(range(M)) � dim(range(L)).

Figure 5.11 illustrates the situation in Theorem 5.20. The linear transformation M
in Theorem 5.20 is merely an “Rn → R

m” version of L, using coordinatized vectors
instead of the actual vectors in V and W . Because L�1

1 and L�1
2 are isomorphisms,

parts (1) and (2) of the theorem show that the subspace ker(L) of V is isomorphic to
the subspace ker(M) of R

n, and that the subspace range(L) of W is isomorphic to the
subspace range(M) of R

m. Parts (3) and (4) of the theorem follow directly from parts
(1) and (2) because isomorphic finite dimensional vector spaces must have the same
dimension. You are asked to prove a more general version of Theorem 5.20 as well as
other related statements in Exercises 17 and 18.

The importance of Theorem 5.20 is that it justifies our use of the Kernel Method
and the Range Method of Section 5.3 when vector spaces other than R

n are involved.
Suppose that we want to find ker(L) and range(L) for a given linear transformation L:
V → W .We begin by coordinatizing the domain V and codomain W using coordinati-
zation isomorphisms L1 and L2 as in Theorem 5.20. (For simplicity, we can assume
B and C are the standard bases for V and W , respectively.) The mapping M cre-
ated in Theorem 5.20 is thus an equivalent “Rn → R

m” version of L. By applying
the Kernel and Range Methods to M , we can find bases for ker(M) and range(M).

L1 L2

M

L

Rn

V

Rm

W

FIGURE 5.11

The linear transformations L and M and the isomorphisms L1 and L2 in Theorem 5.20
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However, parts (1) and (2) of the theorem assure us that ker(L) is isomorphic to
ker(M), and, similarly, that range(L) is isomorphic to range(M). Therefore, by revers-
ing the coordinatizations, we can find bases for ker(L) and range(L). In fact, this is
exactly the approach that was used without justification in Section 5.3 to determine
bases for the kernel and range for linear transformations involving vector spaces other
than R

n.

Proving the Dimension Theorem Using Isomorphism

Recall the Dimension Theorem:

(Dimension Theorem) If L: V → W is a linear transformation and V is finite dimensional,
then range(L) is finite dimensional, and

dim(ker(L)) � dim(range(L)) � dim(V).

In Section 5.3, we stated the Dimension Theorem in its full generality, but only
proved it for linear transformations from R

n to R
m. We now supply the general proof,

assuming that the special case for linear transformations from R
n to R

m has already
been proved.

Proof. The theorem is obviously true if V is the trivial vector space. Suppose B is a finite,
nonempty ordered basis for V. Then, by the comments directly after Theorem 5.13 regarding
spanning sets and range, range(L) is spanned by the finite set L(B), and so range(L) is finite
dimensional. Since L does not interact at all with the vectors in W outside range(L), we can
consider adjusting L so that its codomain is just the subspace range(L) of W. That is,
without loss of generality, we can let W � range(L). Hence, we can assume that W is finite
dimensional.

Let L1:V → R
n and L2:W → R

m be coordinatization transformations with respect to
some ordered bases for V and W, respectively. Applying the special case of the Dimension
Theorem to the linear transformation L2 ◦ L ◦ L�1

1 :Rn → R
m, we get

dim(V) � n � dim(Rn) � dim
(
domain

(
L2 ◦ L ◦ L�1

1

))
� dim

(
ker
(
L2 ◦ L ◦ L�1

1

))
� dim

(
range

(
L2 ◦ L ◦ L�1

1

))
� dim(ker(L)) � dim(range(L)), by parts (3) and (4) of Theorem 5.20.

Suppose that V and W are finite dimensional vector spaces and L:V → W is a linear
transformation. If dim(V) � dim(W), the next result,which requires the full generality
of the DimensionTheorem,asserts that we need only check that L is either one-to-one
or onto to know that L has the other property as well.
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Corollary 5.21 Let V and W be finite dimensional vector spaces with dim(V) �
dim(W). Let L: V → W be a linear transformation. Then L is one-to-one if and only if
L is onto.

Proof. Let V and W be finite dimensional vector spaces with dim(V) � dim(W), and let
L: V → W be a linear transformation. Then

L is one-to-one ⇔ dim(ker(L)) � 0 by Theorem 5.12
⇔ dim(V) � dim(range(L)) by the Dimension Theorem
⇔ dim(W) � dim(range(L)) because dim(V) � dim(W)

⇔ L is onto. by Theorem 4.16

Example 5
Consider L: P2 → R

3 given by L(p) � [p(0),p(1),p(2)]. Now, dim(P2) � dim(R3) � 3. Hence,
by Corollary 5.21, if L is either one-to-one or onto, it has the other property as well.

We will show that L is one-to-one using Theorem 5.12. If p ∈ker(L), then L(p) � 0, and
so p(0) � p(1) � p(2) � 0. Hence, p is a polynomial of degree � 2 touching the x-axis at
x � 0, x � 1, and x � 2. Since the graph of p must be either a parabola or a line, it cannot
touch the x-axis at three distinct points unless its graph is the line y � 0. That is, p � 0 in P2.
Therefore, ker(L) � {0}, and L is one-to-one.

Now, by Corollary 5.21, L is onto. Thus, given any 3-vector [a,b,c], there is some
p ∈ P2 such that p(0) � a, p(1) � b, and p(2) � c. (This example is generalized further in
Exercise 21.)

So far, we have proved many important results concerning the concepts of one-
to-one, onto, and isomorphism. For convenience, these and other useful properties
from the exercises are summarized in Table 5.2.

New Vocabulary

inverse of a linear transformation
invertible linear transformation

isomorphic vector spaces
isomorphism

Highlights

■ A linear transformation L:V → W is invertible if and only if there is a function
M :W → V such that L ◦ M and M ◦ L are the identity linear operators on W and
V , respectively.

■ If a linear transformation has an inverse,its inverse is also a linear transformation.

■ An isomorphism is a linear transformation that is both one-to-one and onto.



 

5.5 Isomorphism 365

Table 5.2 Conditions on linear transformations that are one-to-one, onto, or
isomorphisms

Let L: V → W be a linear transformation, and let B be a basis for V.

L is one-to-one

⇔ ker(L) � {0V } Theorem 5.12

⇔ dim(ker(L)) � 0 Theorem 5.12

⇔ the image of every linearly Theorem 5.13
independent set in V is and Exercise 7
linearly independent in W in Section 5.4

L is onto

⇔ range(L) � W Definition

⇔ dim(range(L)) � dim(W) Theorem 4.16*

⇔ the image of every spanning set Theorem 5.13
for V is a spanning set for W

⇔ the image of some spanning set Exercise 8 in
for V is a spanning set for W Section 5.4

L is an isomorphism

⇔ L is both one-to-one and onto Definition

⇔ L is invertible (that is, Theorem 5.14

L�1: W → V exists)

⇔ the matrix for L (with respect to Theorem 5.15*
every pair of ordered bases for
V and W) is nonsingular

⇔ the matrix for L (with respect to Theorem 5.15*
some pair of ordered bases
for V and W) is nonsingular

⇔ the images of vectors in B are distinct Exercise 14
and L(B) is a basis for W

⇔ L is one-to-one and dim(V) � dim(W) Corollary 5.21*

⇔ L is onto and dim(V) � dim(W) Corollary 5.21*

Furthermore, if L: V → W is an isomorphism, then

(1) dim(V) � dim(W) Theorem 5.17*

(2) L�1 is an isomorphism from W to V Theorem 5.14

(3) for any subspace Y of V, Exercise 16*

dim(Y) � dim(L(Y))

*True only in the finite dimensional case



 

366 CHAPTER 5 Linear Transformations

■ A linear transformation is an isomorphism if and only if it is an invertible linear
transformation.

■ A linear transformation (involving nontrivial finite dimensional vector spaces)
is an isomorphism if and only if the matrix for the linear transformation (with
respect to any ordered bases) is nonsingular.

■ Under an isomorphism, the image of every linearly independent subset of the
domain is linearly independent.

■ Under an isomorphism, the image of every spanning set for the domain spans
the codomain.

■ Under an isomorphism, the dimension of every subspace of the domain is equal
to the dimension of its image.

■ If two vector spaces V and W have the same (finite) dimension, a linear
transformation L: V → W is one-to-one if and only if it is onto.

■ Finite-dimensional vector spaces are isomorphic if and only if they have the same
dimension.

■ All n-dimensional vector spaces are isomorphic to R
n (and to each other).

■ The Simplified Span Method and the IndependenceTest Method can be justified
for sets of vectors in any finite dimensional vector space V by applying a coor-
dinatization isomorphism from V to R

n. Similarly, the Kernel Method and the
Range Method can be justified for any linear transformation L: V → W where V
is finite dimensional by applying coordinatization isomorphisms between V and
R

n and between W and R
m.

EXERCISES FOR SECTION 5.5
1. Each part of this exercise gives matrices for linear operators L1 and L2 on R

3

with respect to the standard basis. For each part, do the following:

(i) Show that L1 and L2 are isomorphisms.

(ii) Find L�1
1 and L�1

2 .

(iii) Calculate L2 ◦ L1 directly.

(iv) Calculate (L2 ◦ L1)
�1 by inverting the appropriate matrix.

(v) Calculate L�1
1 ◦ L�1

2 directly from your answer to (ii) and verify that the
answer agrees with the result you obtained in (iv).

�(a) L1:

⎡
⎣0 �2 1

0 �1 0
1 0 0

⎤
⎦ , L2:

⎡
⎣ 1 0 0

�2 0 1
0 �3 0

⎤
⎦
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(b) L1:

⎡
⎣�4 0 1

0 1 0
1 2 0

⎤
⎦ , L2:

⎡
⎣0 3 �1

1 0 0
0 �2 1

⎤
⎦

�(c) L1:

⎡
⎣�9 2 1

�6 1 1
5 0 �2

⎤
⎦ , L2:

⎡
⎣�4 2 1

�3 1 0
�5 2 1

⎤
⎦

2. Show that L:Mmn → Mnm given by L(A) � AT is an isomorphism.

3. Let A be a fixed nonsingular n � n matrix.

(a) Show that L1:Mnn → Mnn given by L1(B) � AB is an isomorphism. (Hint:
Be sure to show first that L1 is a linear operator.)

(b) Show that L2:Mnn → Mnn given by L2(B) � ABA�1 is an isomorphism.

4. Show that L: Pn → Pn given by L(p) � p � p′ is an isomorphism. (Hint: First
show that L is a linear operator.)

5. Let R: R
2 → R

2 be the operator that reflects a vector through the line y � x;
that is, R([a,b]) � [b,a].
�(a) Find the matrix for R with respect to the standard basis for R

2.

(b) Show that R is an isomorphism.

(c) Prove that R�1 � R using the matrix from part (a).

(d) Give a geometric explanation for the result in part (c).

6. Prove that the change of basis process is essentially an isomorphism;that is, if B
and C are two different finite bases for a vector space V ,with dim(V) � n, then
the mapping L: R

n → R
n given by L([v]B) � [v]C is an isomorphism. (Hint:

First show that L is a linear operator.)

7. Let V , W , and X be vector spaces. Let L1: V → W and L2: V → W be linear
transformations. Let M : W → X be an isomorphism. If M ◦ L1 � M ◦ L2, show
that L1 � L2.

�8. Prove Theorem 5.15.

9. (a) Explain why Mmn
∼� Mnm.

(b) Explain why P4n�3
∼� M4,n�1.

(c) Explain why the subspace of upper triangular matrices in Mnn is isomor-
phic to R

n(n�1)/2. Is the subspace still isomorphic to R
n(n�1)/2 if upper is

replaced by lower?

10. Let V be a vector space. Show that a linear operator L:V → V is an isomorphism
if and only if L ◦ L is an isomorphism.
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11. Let V be a nontrivial vector space. Suppose that L:V → V is a linear operator.

(a) If L ◦ L is the zero transformation, show that L is not an isomorphism.

(b) If L ◦ L � L and L is not the identity transformation, show that L is not an
isomorphism.

12. Let L:Rn → R
n be a linear operator with matrix A (using the standard basis for

R
n). Prove that L is an isomorphism if and only if the columns of A are linearly

independent.

�13. (a) Suppose that L: R6 → P5 is a linear transformation and that L is not onto.
Is L one-to-one? Why or why not?

(b) Suppose that L: M22 → P3 is a linear transformation and that L is not
one-to-one. Is L onto? Why or why not?

14. Let L:V → W be a linear transformation between vector spaces, and let B be a
basis for V .

(a) Show that if L is an isomorphism, then L(B) is a basis for W .

(b) Prove that if L(B) is a basis for W , and the images of vectors in B are distinct,
then L is an isomorphism. (Hint: Use Exercise 8(c) in Section 5.4 to show
L is onto. Then show ker(L) � {0V } using a proof by contradiction.)

(c) Define T :R3 → R
2 by T (X) �

[
3 5 3
1 2 1

]
X,and let B be the standard basis

in R
3. Show that T (B) is a basis for R

2, but T is not an isomorphism.

(d) Explain why part (c) does not provide a counterexample to part (b).

15. Let L: V → W be an isomorphism between finite dimensional vector spaces,
and let B be a basis for V . Show that for all v ∈ V , [v]B � [L(v)]L(B). (Hint: Use
the fact from Exercise 14(a) that L(B) is a basis for W .)

�16. Let L:V → W be an isomorphism,with V finite dimensional. If Y is any subspace
of V , prove that dim(L(Y)) � dim(Y).

17. Suppose T : V → W is a linear transformation, and T1: X → V and T2: W → Y
are isomorphisms.

(a) Prove that ker (T2 ◦ T ) � ker (T ).

(b) Prove that range(T ◦ T1) � range(T ).

�(c) Prove that T1 (ker (T ◦ T1)) � ker (T ).

(d) Show that dim(ker(T )) � dim(ker(T ◦ T1)). (Hint: Use part (c) and
Exercise 16.)

�(e) Prove that range(T2 ◦ T ) � T2 (range(T )).

(f ) Show that dim(range(T )) � dim(range(T2 ◦ T )). (Hint: Use part (e) and
Exercise 16.)
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18. Suppose L:V → W is a linear transformation,and that L1:V → R
n and L2:W →

R
m are isomorphisms. Let M � L2 ◦ L ◦ L�1

1 .

�(a) Use part (c) of Exercise 17 with T � L2 ◦ L and T1 � L�1
1 to prove that

L�1
1 (ker(M)) � ker(L2 ◦ L).

�(b) Use part (a) of this exercise together with part (a) of Exercise 17 to prove
that L�1

1 (ker(M)) � ker(L).

�(c) Use part (b) of this exercise together with Exercise 16 to prove that
dim(ker(M)) � dim(ker(L)).

(d) Use part (e) of Exercise 17 to prove that L�1
2 (range(M)) �

range
(
L ◦ L�1

1

)
. (Hint: Let T � L ◦ L�1

1 and T2 � L2. Then apply L�1
2 to

both sides.)

(e) Use part (d) of this exercise together with part (b) of Exercise 17 to prove
that L�1

2 (range(M)) � range(L).

(f ) Use part (e) of this exercise together with Exercise 16 to prove that
dim(range(M)) � dim(range(L)).

19. We show in this exercise that any isomorphism from R
2 to R

2 is the compo-
sition of certain types of reflections, contractions/dilations, and shears. (See
Exercise 11 in Section 5.1 for the definition of a shear.) Note that if a �� 0,

[
a b
c d

]
�

[
a 0
0 1

][
1 0
c 1

][
1 0
0 ad�bc

a

][
1 b

a
0 1

]
,

and if c �� 0,

[
a b
c d

]
�

[
0 1
1 0

][
c 0
0 1

][
1 0
a 1

][
1 0
0 bc�ad

c

][
1 d

c
0 1

]
.

(a) Use the given equations to show that every nonsingular 2 � 2 matrix can
be expressed as a product of matrices, each of which is in one of the
following forms:

[
k 0
0 1

]
,

[
1 0
0 k

]
,

[
1 0
k 1

]
,

[
1 k
0 1

]
, or

[
0 1
1 0

]
.

(b) Show that when k 	 0, multiplying either of the first two matrices in
part (a) times the vector [x,y] represents a contraction/dilation along the
x-coordinate or the y-coordinate.

(c) Show that when k < 0, multiplying either of the first two matrices in
part (a) times the vector [x,y] represents a contraction/dilation along the
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x-coordinate or the y-coordinate, followed by a reflection through one of

the axes.

(
Hint:

[
k 0
0 1

]
�

[
�1 0

0 1

][
�k 0

0 1

]
.

)
(d) Explain why multiplying either of the third or fourth matrices in part (a)

times [x,y] represents a shear.

(e) Explain why multiplying the last matrix in part (a) times [x,y] represents
a reflection through the line y � x.

(f ) Using parts (a) through (e),show that any isomorphism from R
2 to R

2 is the
composition of a finite number of the following linear operators:reflection
through an axis, reflection through y � x, contraction/dilation of the x- or
y-coordinate, shear in the x- or y-direction.

20. Express the linear transformation L: R
2 → R

2 that rotates the plane 45◦ in a
counterclockwise direction as a composition of the transformations described
in part (f) of Exercise 19.

21. (a) Let x1, x2, x3 be distinct real numbers. Use an argument similar to that in
Example 5 to show that for any given a, b, c ∈ R, there is a polynomial
p ∈ P2 such that p(x1) � a, p(x2) � b, and p(x3) � c.

(b) For each choice of x1,x2,x3,a,b,c ∈ R, show that the polynomial p from
part (a) is unique.

(c) Recall from algebra that a nonzero polynomial of degree n can have at most
n roots. Use this fact to prove that if x1, . . . ,xn�1 ∈ R, with x1, . . . ,xn�1

distinct, then for any given a1, . . . ,an�1 ∈ R, there is a unique polynomial
p ∈ Pn such that p(x1) � a1, p(x2) � a2, . . . ,p(xn) � an, and p(xn�1) �
an�1.

22. Define L:P → P by L(p(x)) � xp(x).

(a) Show that L is one-to-one but not onto.

(b) Explain why L does not contradict Corollary 5.21.

�23. True or False:

(a) If the inverse L�1 of a linear transformation L exists,then L�1 is also a linear
transformation.

(b) A linear transformation is an isomorphism if and only if it is invertible.

(c) If L: V → V is a linear operator, and the matrix for L with respect to
the finite basis B for V is ABB, then L is an isomorphism if and only if
|ABB| � 0.

(d) If L: V → W is a linear transformation, then L is one-to-one if and only if L
is onto.
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(e) If L:V → W is a linear transformation and M :X → V is an isomorphism,
then ker (L ◦ M) � ker(L).

(f ) If L:V → W is a linear transformation and M :X → V is an isomorphism,
then range(L ◦ M) � range(L).

(g) If L:V → W is an isomorphism and w1, . . . ,wn ∈ W , then for every
set of scalars a1, . . . ,an, L�1 (a1w1 � · · · � anwn) � a1L�1(w1) � · · · �
anL�1(wn).

(h) R
28 ∼� P27

∼� M74.

(i) If L:R6 → M32 is not one-to-one, then it is not onto.

5.6 DIAGONALIZATION OF LINEAR OPERATORS
In Section 3.4, we examined a method for diagonalizing certain square matrices. In
this section, we generalize this process to diagonalize certain linear operators.

Eigenvalues, Eigenvectors, and Eigenspaces for Linear Operators

We define eigenvalues and eigenvectors for linear operators in a manner analogous to
their definitions for matrices.

Definition Let L: V → V be a linear operator. A real number � is said to be an
eigenvalue of L if and only if there is a nonzero vector v ∈ V such that L(v) � �v.
Also, any nonzero vector v such that L(v) � �v is said to be an eigenvector for L
corresponding to the eigenvalue �.

If L is a linear operator on R
n given by multiplication by a square matrix A (that

is,L(v) � Av), then the eigenvalues and eigenvectors for L are merely the eigenvalues
and eigenvectors of the matrix A, since L(v) � �v if and only if Av � �v. Hence,all of
the results regarding eigenvalues and eigenvectors for matrices in Section 3.4 apply
to this type of operator. Let us now consider an example involving a different type of
linear operator.

Example 1
Consider L:Mnn → Mnn given by L(A) � A � AT . Then every nonzero n � n symmetric matrix
S is an eigenvector for L corresponding to the eigenvalue �1 � 2 because L(S) � S � ST � S � S
(since S is symmetric) � 2S. Similarly, every nonzero skew-symmetric n � n matrix V is an
eigenvector for L corresponding to the eigenvalue �2 � 0 because L(V) � V � VT � V � (�V) �

Onn � 0V.
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We now define an eigenspace for a linear operator.

Definition Let L:V → V be a linear operator on V . Let � be an eigenvalue for
L. Then E�, the eigenspace of �, is defined to be the set of all eigenvec-
tors for L corresponding to �, together with the zero vector 0V of V . That is,
E� � {v ∈ V | L(v) � �v}.

Just as the eigenspace of an n � n matrix is a subspace of R
n (see Theorem 4.4),

the eigenspace of a linear operator L:V → V is a subspace of the vector space V . This
can be proved directly by showing that the eigenspace is nonempty and closed under
vector addition and scalar multiplication, and then applying Theorem 4.2.

Example 2
Recall the operator L:Mnn → Mnn from Example 1 given by L(A) � A � AT . We have already
seen that the eigenspace E2 for L contains all symmetric n � n matrices. In fact, these are the
only elements of E2 because

L(A) � 2A ” A � AT � 2A ” A � AT � A � A ” AT � A.

Hence, E2 � {symmetric n � n matrices}, which we know to be a subspace of Mnn having
dimension n(n � 1)/2.

Similarly, the eigenspace E0 � {skew-symmetric n � n matrices}.

The Characteristic Polynomial of a Linear Operator

Frequently, we analyze a linear operator L on a finite dimensional vector space V by
looking at its matrix with respect to some basis for V . In particular, to solve for the
eigenvalues of L, we first find an ordered basis B for V , and then solve for the matrix
representation A of L with respect to B. For this matrix A, we have [L(v)]B � A[v]B.
Thus, finding the eigenvalues of A gives the eigenvalues of L.

Example 3
Let L:R2 → R

2 be the linear operator given by L([a,b]) � [b,a]; that is, a reflection about the
line y � x. We will calculate the eigenvalues for L two ways — first, using the standard basis for
R

2, and then, using a nonstandard basis.
Since L(i) � j and L(j) � i, the matrix for L with respect to the standard basis is

A �

[
0 1
1 0

]
. Then pA (x) �

∣∣∣∣∣ x �1
�1 x

∣∣∣∣∣� x2 � 1 � (x � 1)(x � 1).

Hence, the eigenvalues for A (and L) are �1 � 1 and �2 � �1. Solving the homogeneous system
(1I2 � A)v � 0 yields v1 � [1,1] as an eigenvector corresponding to �1 � 1. Similarly, we obtain
v2 � [1,�1], for �2 � �1.
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Notice that this result makes sense geometrically. The vector v1 runs parallel to the line
of reflection and thus L leaves v1 unchanged; L(v1) � �1v1 � v1. On the other hand, v2 is
perpendicular to the axis of reflection, and so L reverses its direction; L(v2) � �2v2 � �v2.

Now, instead of using the standard basis in R
2, let us find the matrix representation of L with

respect to B � (v1,v2). Since [L(v1)]B � [1,0] and [L(v2)]B � [0,�1] (why?), the matrix for L
with respect to B is

D �

[L(v1)]B[
1
0

[L(v2)]B
0

�1

]
,

a diagonal matrix with the eigenvalues for L on the main diagonal. Notice that

pD(x) �

∣∣∣∣∣x � 1 0
0 x � 1

∣∣∣∣∣� (x � 1)(x � 1) � pA (x) ,

giving us (of course) the same eigenvalues �1 � 1 and �2 � �1 for L.

Example 3 illustrates how two different matrix representations for the same linear
operator (using different ordered bases) produce the same characteristic polynomial.
Theorem 5.6 and Exercise 6 in Section 3.4 together show that this is true in general.
Therefore, we can define the characteristic polynomial of a linear operator as follows,
without concern about which particular ordered basis is used:

Definition Let L be a linear operator on a nontrivial finite dimensional vector space
V . Suppose A is the matrix representation of L with respect to some ordered basis
for V . Then the characteristic polynomial of L, pL(x), is defined to be pA (x).

Example 4
Consider L:P2 → P2 determined by L(p(x)) � x2p′′(x) � (3x � 2)p′(x) � 5p(x). You can
check that L(x2) � 13x2 � 4x, L(x) � 8x � 2, and L(1) � 5. Thus, the matrix representation
of L with respect to the standard basis S � (x2, x,1) is

A �

⎡
⎢⎣ 13 0 0

�4 8 0
0 �2 5

⎤
⎥⎦ .

Hence,

pL (x) � pA (x) �

∣∣∣∣∣∣∣
x � 13 0 0

4 x � 8 0
0 2 x � 5

∣∣∣∣∣∣∣� (x � 13)(x � 8)(x � 5),
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since this is the determinant of a lower triangular matrix. The eigenvalues of L are the roots of
pL(x), namely, �1 � 13, �2 � 8, and �3 � 5.

Criterion for Diagonalization

Given a linear operator L on a finite dimensional vector space V , our goal is to find a
basis B for V such that the matrix for L with respect to B is diagonal, as in Example 3.
But, just as every square matrix cannot be diagonalized, neither can every linear
operator.

Definition A linear operator L on a finite dimensional vector space V is diagonal-
izable if and only if the matrix representation of L with respect to some ordered
basis for V is a diagonal matrix.

The next result indicates precisely which linear operators are diagonalizable.

Theorem 5.22 Let L be a linear operator on a nontrivial n-dimensional vector space V.
Then L is diagonalizable if and only if there is a set of n linearly independent eigenvectors
for L.

Proof. Suppose that L is diagonalizable. Then there is an ordered basis B � (v1, . . . ,vn) for
V such that the matrix representation for L with respect to B is a diagonal matrix D. Now,
B is a linearly independent set. If we can show that each vector vi in B, for 1 � i � n, is
an eigenvector corresponding to some eigenvalue for L, then B will be a set of n linearly
independent eigenvectors for L. Now, for each vi, we have [L(vi)]B � D[vi]B � Dei �
diiei � dii[vi]B � [diivi]B, where dii is the (i, i) entry of D. Since coordinatization of vectors
with respect to B is an isomorphism, we have L(vi) � diivi, and so each vi is an eigenvector
for L corresponding to the eigenvalue dii.

Conversely, suppose that B � {w1, . . . ,wn} is a set of n linearly independent eigenvectors
for L, corresponding to the (not necessarily distinct) eigenvalues �1, . . . ,�n, respectively.
Since B contains n � dim(V) linearly independent vectors, B is a basis for V, by part (2) of
Theorem 4.13. We show that the matrix A for L with respect to B is, in fact, diagonal. Now,
for 1 � i � n,

ith column of A � [L(wi)]B � [�iwi]B � �i[wi]B � �iei .

Thus, A is a diagonal matrix, and so L is diagonalizable.

Example 5
In Example 3, L:R2 → R

2 was defined by L([a,b]) � [b,a]. In that example, we found a set of two
linearly independent eigenvectors for L, namely, v1 � [1,1] and v2 � [1,�1]. Since dim(R2) � 2,
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Theorem 5.22 indicates that L is diagonalizable. In fact, in Example 3, we computed the matrix

for L with respect to the ordered basis (v1,v2) for R
2 to be the diagonal matrix

[
1 0
0 �1

]
.

Example 6
Consider the linear operator L:R2 → R

2 that rotates the plane counterclockwise through an
angle of �

4 . Now, every nonzero vector v is moved to L(v), which is not parallel to v, since L(v)

forms a 45◦ angle with v. Hence, L has no eigenvectors, and so a set of two linearly independent
eigenvectors cannot be found for L. Therefore, by Theorem 5.22, L is not diagonalizable.

Linear Independence of Eigenvectors

Theorem 5.22 asserts that finding enough linearly independent eigenvectors is crucial
to the diagonalization process.The next theorem gives a condition under which a set
of eigenvectors is guaranteed to be linearly independent.

Theorem 5.23 Let L be a linear operator on a vector space V, and let �1, . . . ,�t be dis-
tinct eigenvalues for L. If v1, . . . ,vt are eigenvectors for L corresponding to �1, . . . ,�t ,
respectively, then the set {v1, . . . ,vt } is linearly independent. That is, eigenvectors
corresponding to distinct eigenvalues are linearly independent.

Proof. We proceed by induction on t.
Base Step: Suppose that t � 1. Any eigenvector v1 for �1 is nonzero, so {v1} is linearly

independent.
Inductive Step: Let �1, . . .,�k�1 be distinct eigenvalues for L, and let v1, . . . ,vk�1 be

corresponding eigenvectors. Our inductive hypothesis is that the set {v1, . . . ,vk} is lin-
early independent. We must prove that {v1, . . . ,vk,vk�1} is linearly independent. Suppose
that a1v1 � · · · � akvk � ak�1vk�1 � 0V . Showing that a1 � a2 � · · · � ak � ak�1 � 0 will
finish the proof. Now,

L(a1v1 � · · · � akvk � ak�1vk�1)� L(0V )

” a1L(v1) � · · · � akL(vk) � ak�1L(vk�1)� L(0V )

” a1�1v1 � · · · � ak�kvk � ak�1�k�1vk�1� 0V .

Multiplying both sides of the original equation a1v1 � · · · � akvk � ak�1vk�1 � 0V by
�k�1 yields

a1�k�1v1 � · · · � ak�k�1vk � ak�1�k�1vk�1 � 0V .

Subtracting the last two equations containing �k�1 gives

a1(�1 � �k�1)v1 � · · · � ak(�k � �k�1)vk � 0V .
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Hence, our inductive hypothesis implies that

a1(�1 � �k�1) � · · · � ak(�k � �k�1) � 0.

Since the eigenvalues �1, . . . ,�k�1 are distinct, none of the factors �i � �k�1 in these equa-
tions can equal zero, for 1 � i � k. Thus, a1 � a2 � · · · � ak � 0. Finally, plugging these
values into the earlier equation a1v1 � · · · � akvk � ak�1vk�1 � 0V gives ak�1vk�1 � 0V .
Since vk�1 �� 0V , we must have ak�1 � 0 as well.

Example 7
Consider the linear operator L:R3 → R

3 given by L(x) � Ax, where

A �

⎡
⎢⎣ 31 �14 �92

�50 28 158
18 �9 �55

⎤
⎥⎦ .

It can be shown that the characteristic polynomial for A is pA(x) � x3 � 4x2 � x � 6 � (x � 1)

(x � 2)(x � 3). Hence, the eigenvalues for A are �1 � �1, �2 � 2, and �3 � 3. A quick check
verifies that [2,�2,1], [10,1,3], and [1,2,0] are eigenvectors, respectively, for the distinct eigen-
values �1, �2, and �3. Therefore, by Theorem 5.23, the set B � {[2,�2,1], [10,1,3], [1,2,0]} is
linearly independent (verify!). In fact, since dim(R3) � 3, this set B is a basis for R

3.
Also note that L is diagonalizable by Theorem 5.22, since there are three linearly independent

eigenvectors for L and dim(R3) � 3. In fact, the matrix for L with respect to B is

D �

⎡
⎢⎣�1 0 0

0 2 0
0 0 3

⎤
⎥⎦ .

This can be verified by computing D � P�1AP, where

P �

⎡
⎢⎣ 2 10 1

�2 1 2
1 3 0

⎤
⎥⎦

is the transition matrix from B-coordinates to standard coordinates, that is, the matrix whose
columns are the vectors in B (see Exercise 8(b) in Section 4.7).

As illustrated in Example 7, Theorems 5.22 and 5.23 combine to prove the
following:

Corollary 5.24 If L is a linear operator on an n-dimensional vector space and L has n
distinct eigenvalues, then L is diagonalizable.

The converse to this corollary is false, since it is possible to get n linearly
independent eigenvectors from fewer than n eigenvalues (see Exercise 6).
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The proof of the following generalization of Theorem 5.23 is left as Exercises 15
and 16.

Theorem 5.25 Let L:V → V be a linear operator on a finite dimensional vector space V,
and let B1,B2, . . . ,Bk be bases for eigenspaces E�1 , . . . ,E�k for L, where �1, . . . ,�k are
distinct eigenvalues for L. Then Bi ∩ Bj � � for 1 � i < j � k, and B1 ∪ B2 ∪ ·· · ∪ Bk is
a linearly independent subset of V.

This theorem asserts that for a given operator on a finite dimensional vector space,
the bases for distinct eigenspaces are disjoint, and the union of two or more bases
from distinct eigenspaces always constitutes a linearly independent set.

Example 8
Consider the linear operator L:R4 → R

4 given by L(x) � Ax, for the matrix A in Example 6 of
Section 3.4; namely,

A �

⎡
⎢⎢⎢⎣

�4 7 1 4
6 �16 �3 �9

12 �27 �4 �15
�18 43 7 24

⎤
⎥⎥⎥⎦ .

In that example, we showed there were precisely three eigenvalues for A (and hence, for L):
�1 � �1, �2 � 2, and �3 � 0. In the row reduction of [(�1)I4 � A |0] in that example, we found
two independent variables, and so dim(E�1) � 2. We also discovered fundamental eigenvec-
tors X1 � [�2,�1,1,0] and X2 � [�1,�1,0,1] for �1. Therefore, {X1,X2} is a basis for E�1 .
Similarly, we can verify that dim(E�2) � dim(E�3) � 1. We found a fundamental eigenvector
X3 � [1,�2,�4,6] for �2, and a fundamental eigenvector X4 � [1,�3,�3,7] for �3. Thus, {X3}
is a basis for E�2 , and {X4} is a basis for E�3 . Now, by Theorem 5.25, the union {X1,X2,X3,X4} of

these bases is a linearly independent subset of R
4. Of course, since dim(R4) � 4,{X1,X2,X3,X4}

is also a basis for R
4. Hence, by Theorem 5.22, L is diagonalizable.

Method for Diagonalizing a Linear Operator

Theorem 5.25 suggests a method for diagonalizing a given linear operator L: V → V ,
when possible.This method,outlined below,illustrates how to find a basis B so that the
matrix for L with respect to B is diagonal. In the case where V � R

n and the standard
basis is used,we simply apply the Diagonalization Method of Section 3.4 to the matrix
for L to find a basis for V . In other cases,we first need to choose a basis C for V . Next
we find the matrix for L with respect to C , and then use the Diagonalization Method
on this matrix to obtain a basis Z of eigenvectors in R

n. Finally, the desired basis B
for V consists of the vectors in V whose coordinatization with respect to C are the
vectors in Z .
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Method for Diagonalizing a Linear Operator (if possible) (Generalized Diagonalization Method)
Let L: V → V be a linear operator on an n-dimensional vector space V.

Step 1: Find a basis C for V (if V � R
n, we can use the standard basis), and calculate the

matrix representation A of L with respect to C.

Step 2: Apply the Diagonalization Method of Section 3.4 to A in order to obtain all of the
eigenvalues �1, . . . , �k of A and a basis in R

n for each eigenspace E�i of A (by
solving an appropriate homogeneous system if necessary). If the union of the bases
of the E�i contains fewer than n elements, then L is not diagonalizable, and we stop.
Otherwise, let Z � (w1, . . . , wn) be an ordered basis for R

n consisting of the union
of the bases for the E�i .

Step 3: Reverse the C-coordinatization isomorphism on the vectors in Z to obtain an
ordered basis B � (v1, . . . ,vn) for V; that is, [vi]C � wi .

The matrix representation for L with respect to B is the diagonal matrix D whose (i, i)
entry dii is the eigenvalue for L corresponding to vi . In most practical situations, the
transition matrix P from B- to C-coordinates is useful; P is the n � n matrix whose
columns are [v1]C , . . . , [vn]C — that is, w1,w2, . . . ,wn. Note that D � P�1AP.

If we have a linear operator on R
n and use the standard basis for C , then the

C -coordinatization isomorphism in this method is merely the identity mapping. In this
case, Steps 1 and 3 are a lot easier to perform, as we see in the next example.

Example 9
We use the preceding method to diagonalize the operator L:R4 → R

4 given by L(v) � Av, where

A �

⎡
⎢⎢⎢⎣

5 0 �8 8
8 1 �16 16

�4 0 9 �8
�8 0 16 �15

⎤
⎥⎥⎥⎦ .

Step 1: Since V � R
4, we let C be the standard basis for R

4. Then no additional work needs to
be done here, since the matrix representation for L with respect to C is simply A itself.

Step 2: We apply the Diagonalization Method of Section 3.4 to A. A lengthy computation
produces the characteristic polynomial

pA (x) � x4 � 6x2 � 8x � 3 � (x � 1)3(x � 3).

Thus, the eigenvalues for A are �1 � 1 and �2 � �3.
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To obtain a basis for the eigenspace E�1 , we row reduce

[1I4 � A |0] �

⎡
⎢⎢⎢⎣

�4 0 8 �8
�8 0 16 �16

4 0 �8 8
8 0 �16 16

∣∣∣∣∣∣∣∣∣
0
0
0
0

⎤
⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎣

1 0 �2 2
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣
0
0
0
0

⎤
⎥⎥⎥⎦ .

There are three independent variables, so dim(E�1) � 3. As in Section 3.4, we set each
independent variable in turn to 1, while setting the others equal to 0. This yields three
linearly independent fundamental eigenvectors: w1 � [0,1,0,0],w2 � [2,0,1,0], and
w3 � [�2,0,0,1]. Thus, {w1,w2,w3} is a basis for E�1 . A similar procedure yields
dim(E�2) � 1, and a fundamental eigenvector w4 � [1,2,�1,�2] for E�2 . Also, {w4} is
a basis for E�2 . Since dim(V) � 4 and since we obtained four fundamental eigenvectors
overall from the Diagonalization Method, L is diagonalizable. We form the union Z �

{w1,w2,w3,w4} of the bases for E�1 and E�2 .

Step 3: Since C is the standard basis for R
4 and the C-coordinatization isomorphism is

the identity mapping, no additional work needs to be done here. We simply let
B � (v1, v2, v3, v4), where v1 � w1,v2 � w2,v3 � w3, and v4 � w4. That is, B �

([0,1,0,0], [2,0,1,0], [�2,0,0,1], [1,2,�1,�2]). B is an ordered basis for V � R
4.

Notice that the matrix representation of L with respect to B is the 4 � 4 diagonal
matrix D with each dii equal to the eigenvalue for vi , for 1 � i � 4. In particular,

D �

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �3

⎤
⎥⎥⎥⎦ .

Also, the transition matrix P from B-coordinates to standard coordinates is formed
by using v1,v2,v3, and v4 as columns. Hence,

P �

⎡
⎢⎢⎢⎣

0 2 �2 1
1 0 0 2
0 1 0 �1
0 0 1 �2

⎤
⎥⎥⎥⎦ , and its inverse is P�1 �

⎡
⎢⎢⎢⎣

2 1 �4 4
�1 0 3 �2
�2 0 4 �3
�1 0 2 �2

⎤
⎥⎥⎥⎦ .

You should verify that P�1AP � D.

In the next example, the linear operator is not originally defined as a matrix
multiplication, and so Steps 1 and 3 of the process require additional work.

Example 10
Let L: P3 → P3 be given by L(p(x)) � xp′(x) � p(x � 1). We want to find an ordered basis B
for P3 such that the matrix representation of L with respect to B is diagonal.
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Step 1: Let C � (x3,x2,x,1), the standard basis for P3. We need the matrix for L with respect
to C. Calculating directly, we get

L(x3) � x(3x2) � (x � 1)3 � 4x3 � 3x2 � 3x � 1,

L(x2) � x(2x) � (x � 1)2 � 3x2 � 2x � 1,

L(x) � x(1) � (x � 1) � 2x � 1,

and L(1) � x(0) � 1 � 1.

Thus, the matrix for L with respect to C is

A �

⎡
⎢⎢⎢⎣

4 0 0 0
3 3 0 0
3 2 2 0
1 1 1 1

⎤
⎥⎥⎥⎦ .

Step 2: We now apply the Diagonalization Method of Section 3.4 to A. The characteristic polyno-
mial of A is pA (x) � (x � 4)(x � 3)(x � 2)(x � 1), since A is lower triangular. Thus, the
eigenvalues for A are �1 � 4,�2 � 3,�3 � 2, and �4 � 1. Solving for a basis for each
eigenspace of A gives: basis for E�1 � {[6,18,27,17]}, basis for E�2 � {[0,2,4,3]}, basis
for E�3 � {[0,0,1,1]}, and basis for E�4

� {[0,0,0,1]}. Since dim(P3) � 4 and since we
obtained four distinct eigenvectors, L is diagonalizable. The union

Z � {[6,18,27,17], [0,2,4,3], [0,0,1,1], [0,0,0,1]}
of these eigenspaces is a linearly independent set by Theorem 5.25, and hence, Z is a
basis for R4.

Step 3: Reversing the C-coordinatization isomorphism on the vectors in Z yields the ordered
basis B�(v1,v2,v3,v4) for P3, where v1 � 6x3 �18x2 �27x �17, v2 � 2x2 �4x �3,
v3 � x �1, and v4 � 1. The diagonal matrix

D �

⎡
⎢⎢⎢⎣

4 0 0 0
0 3 0 0
0 0 2 0
0 0 0 1

⎤
⎥⎥⎥⎦

is the matrix representation of L in B-coordinates and has the eigenvalues of L
appearing on the main diagonal. Finally, the transition matrix P from B-coordinates
to C-coordinates is

P �

⎡
⎢⎢⎢⎣

6 0 0 0
18 2 0 0
27 4 1 0
17 3 1 1

⎤
⎥⎥⎥⎦ .

It can quickly be verified that D � P�1AP.
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Geometric and Algebraic Multiplicity

As we have seen, the number of eigenvectors in a basis for each eigenspace is crucial
in determining whether a given linear operator is diagonalizable,and so we often need
to consider the dimension of each eigenspace.

Definition Let L be a linear operator on a finite dimensional vector space, and let
� be an eigenvalue for L. Then the dimension of the eigenspace E� is called the
geometric multiplicity of �.

Example 11
In Example 9, we studied a linear operator on R

4 having eigenvalues �1 � 1 and �2 � �3. In
that example, we found dim(E�1) � 3 and dim(E�2) � 1. Hence, the geometric multiplicity of �1

is 3 and the geometric multiplicity of �2 is 1.

We define the algebraic multiplicity of a linear operator in a manner analogous to
the matrix-related definition in Section 3.4.

Definition Let L be a linear operator on a finite dimensional vector space, and let
� be an eigenvalue for L. Suppose that (x � �)k is the highest power of (x � �)

that divides pL(x). Then k is called the algebraic multiplicity of �.

In Section 3.4,we suggested,but did not prove,the following relationship between
the algebraic and geometric multiplicities of an eigenvalue.

Theorem 5.26 Let L be a linear operator on a finite dimensional vector space V, and
let � be an eigenvalue for L. Then

1 � (geometric multiplicity of �) � (algebraic multiplicity of �).

The proof of Theorem 5.26 uses the following lemma:

Lemma 5.27 Let A be an n � n matrix symbolically represented by A �

[
B C
O D

]
, where

B is an m � m submatrix, C is an m � (n � m) submatrix, O is an (n � m) � m zero
submatrix, and D is an (n � m) � (n � m) submatrix. Then, |A| � |B| · |D|.
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Lemma 5.27 follows from Exercise 14 in Section 3.2. (We suggest you complete
that exercise if you have not already done so.)

Proof. Proof of Theorem 5.26: Let V ,L, and � be as given in the statement of the theorem,
and let k represent the geometric multiplicity of �. By definition, the eigenspace E� must
contain at least one nonzero vector, and thus k � dim(E�) 	 1. Thus, the first inequality in
the theorem is proved.

Next, choose a basis {v1, . . . ,vk} for E� and expand it to an ordered basis B �
(v1, . . . ,vk,vk�1, . . . ,vn) for V. Let A be the matrix representation for L with respect to
B. Notice that for 1 � i � k, the ith column of A � [L(vi)]B � [�vi]B � �[vi]B � �ei. Thus,
A has the form

A �

[
�Ik C
O D

]
,

where C is a k � (n � k) submatrix, O is an (n � k) � k zero submatrix, and D is an
(n � k) � (n � k) submatrix.

The form of A makes it straightforward to calculate the characteristic polynomial of L:

pL(x) � pA (x) � |xIn � A| �

∣∣∣∣xIn �

[
�Ik C
O D

]∣∣∣∣
�

∣∣∣∣(x � �) Ik �C
O xIn�k � D

∣∣∣∣
� |(x � �)Ik| · |xIn�k � D| by Lemma 5.27

� (x � �)k · pD (x) .

Let l be the number of factors of x � � in pD (x). (Note that l 	 0, with l � 0 if pD(�) �� 0.)
Then, altogether, (x � �)k�l is the largest power of x � � that divides pL (x). Hence,

geometric multiplicity of � � k � k � l � algebraic multiplicity of �.

Example 12
Consider the linear operator L:R4 → R

4 given by

L

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠�

⎡
⎢⎢⎢⎣

5 2 0 1
�2 1 0 �1

4 4 3 2
16 0 �8 �5

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ .

In Exercise 3(a), you are asked to verify that pL(x) � (x � 3)3(x � 5). Thus, the eigenvalues for
L are �1 � 3 and �2 � �5. Notice that the algebraic multiplicity of �1 is 3 and the algebraic
multiplicity of �2 is 1.
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Next we find the eigenspaces of �1 and �2 by solving appropriate homogeneous systems.
Let A be the matrix for L. For �1 � 3, we solve (3I4 � A)v � 0 by row reducing

⎡
⎢⎢⎢⎣

�2 �2 0 �1
2 2 0 1

�4 �4 0 �2
�16 0 8 8

∣∣∣∣∣∣∣∣∣
0
0
0
0

⎤
⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎢⎣

1 0 � 1
2 � 1

2

0 1 1
2 1

0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣∣

0

0

0
0

⎤
⎥⎥⎥⎥⎦ .

Thus, a basis for E3 is {[1,�1,2,0] , [1,�2,0,2]}, and so the geometric multiplicity of �1 is 2,
which is less than its algebraic multiplicity.

In Exercise 3(b), you are asked to solve an appropriate system to show that the eigenspace
for �2 � �5 has dimension 1, with {[�1,1,�2,8]} being a basis for E�5. Thus, the geomet-
ric multiplicity of �2 is 1. Hence, the geometric and algebraic multiplicities of �2 are actually
equal.

The eigenvalue �2 in Example 12 also illustrates the principle that if the algebraic
multiplicity of an eigenvalue is 1, then its geometric multiplicity must also be 1. This
follows immediately from Theorem 5.26.

Multiplicities and Diagonalization

Theorem 5.26 gives us a way to use algebraic and geometric multiplicities to deter-
mine whether a linear operator is diagonalizable. Let L:V → V be a linear operator,
with dim(V) � n. Then pL(x) has degree n. Therefore, the sum of the algebraic multi-
plicities for all eigenvalues can be at most n. Now, for L to be diagonalizable, L must
have n linearly independent eigenvectors by Theorem 5.22. This can only happen if
the sum of the geometric multiplicities of all eigenvalues for L equals n.Theorem 5.26
then forces the geometric multiplicity of every eigenvalue to equal its algebraic multi-
plicity (why?). We have therefore proven the following alternative characterization of
diagonalizability:

Theorem 5.28 Let L:V → V be a linear operator with dim(V) � n. Then L is diagonal-
izable if and only if both of the following conditions hold: (1) the sum of the algebraic
multiplicities over all eigenvalues of L equals n, and (2) the geometric multiplicity of
each eigenvalue equals its algebraic multiplicity.

Theorem 5.28 gives another justification that the operator L on R
4 in Exam-

ple 9 is diagonalizable. The eigenvalues �1 � 1 and �2 � �3 have algebraic mul-
tiplicities 3 and 1, respectively, and 3 � 1 � 4 � dim(R4). Also, the eigenvalues
respectively have geometric multiplicities 3 and 1, which equal their algebraic mul-
tiplicities. These conditions ensure L is diagonalizable, as we demonstrated in that
example.
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Example 13
Theorem 5.28 shows the operator on R

4 in Example 12 is not diagonalizable because the
geometric multiplicity of �1 � 3 is 2, while its algebraic multiplicity is 3.

Example 14
Let L:R3 → R

3 be a rotation about the z-axis through an angle of �
3 . Then the matrix for L with

respect to the standard basis is

A �

⎡
⎢⎢⎣

1
2 �

√
3

2 0
√

3
2

1
2 0

0 0 1

⎤
⎥⎥⎦ ,

as described in Table 5.1. Using A, we calculate pL(x) � x3 � 2x2 � 2x � 1 � (x � 1)(x2 � x �

1), where the quadratic factor has no real roots. Therefore, � � 1 is the only eigenvalue, and its
algebraic multiplicity is 1. Hence, by Theorem 5.28, L is not diagonalizable because the sum of
the algebraic multiplicities of its eigenvalues equals 1, which is less than dim(R3) � 3.

The Cayley-Hamilton Theorem

We conclude this section with an interesting relationship between a matrix and its
characteristic polynomial. If p(x) � anxn � an�1xn�1 · · · � a1x � a0 is any polyno-
mial and A is an n � n matrix, we define p(A) to be the n � n matrix given by
p(A) � anAn � an�1An�1 · · · � a1A � a0In.

Theorem 5.29 (Cayley-Hamilton Theorem) Let A be an n � n matrix, and let pA (x)

be its characteristic polynomial. Then pA(A) � On.

The Cayley-HamiltonTheorem is an important result in advanced linear algebra.We
have placed its proof in Appendix A for the interested reader.

Example 15

Let A �

[
3 2
4 �1

]
. Then pA (x) � x2 � 2x � 11 (verify!). The Cayley-Hamilton Theorem states

that pA(A) � O2. To check this, note that

pA(A) � A2 � 2A � 11I2 �

[
17 4
8 9

]
�

[
6 4
8 �2

]
�

[
11 0
0 11

]
�

[
0 0
0 0

]
.
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� Application: You have now covered the prerequisites for Section 8.9,“Differ-
ential Equations.”

New Vocabulary

algebraic multiplicity (of an eigenvalue)
Cayley-Hamilton Theorem
characteristic polynomial (for a linear

operator)
diagonalizable linear operator
eigenspace (for an eigenvalue of a linear

operator)

eigenvalue of a linear operator
eigenvector of a linear operator
Generalized Diagonalization Method

(for a linear operator)
geometric multiplicity (of an eigen-

value)

Highlights

■ A linear operator L on a finite dimensional vector space V is diagonalizable if the
matrix for L with respect to some ordered basis for V is diagonal.

■ A linear operator L on an n-dimensional vector space V is diagonalizable if and
only if n linearly independent eigenvectors exist for L.

■ Eigenvectors corresponding to distinct eigenvalues are linearly independent.

■ A linear operator L on an n-dimensional vector space V is diagonalizable if n
distinct eigenvalues exist for L.

■ If L is a linear operator,the union of bases for distinct eigenspaces of L is a linearly
independent set.

■ The Diagonalization Method of Section 3.4 applies to any matrix A for a lin-
ear operator on a finite dimensional vector space, and if A is diagonalizable,
the method can be used to find the eigenvalues of A, a basis of fundamental
eigenvectors for A, and a diagonal matrix similar to A.

■ The geometric multiplicity of an eigenvalue is the dimension of its eigenspace.

■ The algebraic multiplicity of an eigenvalue � for a linear operator L is the highest
power of (x � �) that divides the characteristic polynomial pL(x).

■ The geometric multiplicity of an eigenvalue is always less than or equal to its
algebraic multiplicity.

■ A linear operator L on an n-dimensional vector space is diagonalizable if and
only if both of the following conditions hold: (1) the sum of all the algebraic
multiplicities of all the eigenvalues of L is equal to n, and (2) the geometric
multiplicity of each eigenvalue equals its algebraic multiplicity.



 

386 CHAPTER 5 Linear Transformations

■ If A is an n � n matrix with characteristic polynomial pA (x), then pA(A) � On.
That is, every matrix is a“root”of its characteristic polynomial (Cayley-Hamilton
Theorem).

EXERCISES FOR SECTION 5.6
1. For each of the following, let L be a linear operator on R

n represented by the
given matrix with respect to the standard basis. Find all eigenvalues for L, and
find a basis for the eigenspace corresponding to each eigenvalue. Compare the
geometric and algebraic multiplicities of each eigenvalue.

�(a)

[
2 1
0 2

]

(b)

[
3 0
4 2

]

�(c)

⎡
⎣ 0 1 1

�1 4 �1
�1 5 �2

⎤
⎦

�(d)

⎡
⎣ 2 0 0

4 �3 �6
�4 5 8

⎤
⎦

(e)

⎡
⎣ 7 1 2

�11 �2 �3
�24 �3 �7

⎤
⎦

(f)

⎡
⎢⎢⎣

�13 10 12 19
1 5 7 �2

�2 �1 �1 3
�9 8 10 13

⎤
⎥⎥⎦

2. Each of the following represents a linear operator L on a vector space V . Let
C be the standard basis in each case, and let A be the matrix representation of
L with respect to C . Follow Steps 1 and 2 of the Generalized Diagonalization
Method to determine whether L is diagonalizable. If L is diagonalizable, finish
the method by performing Step 3. In particular, find the following:

(i) An ordered basis B for V consisting of eigenvectors for L

(ii) The diagonal matrix D that is the matrix representation of L with respect
to B

(iii) The transition matrix P from B to C

Finally, check your work by verifying that D � P�1AP.

(a) L: R4 → R
4 given by L

([x1,x2,x3,x4]
)

� [x2,x1,x4,x3]
�(b) L:P2 → P2 given by L

(
p(x)

)
� (x � 1)p′(x)

(c) L:P2 → P2 given by L
(
p(x)

)
� x2p′′(x) � p′(x) � 3p(x)

�(d) L:P2 → P2 given by L
(
p(x)

)
� (x � 3)2p′′(x) � xp′(x) � 5p(x)

�(e) L:R2 → R
2 such that L is the counterclockwise rotation about the origin

through an angle of �
3 radians
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(f ) L:M22 → M22 given by L(K) � KT

(g) L:M22 → M22 given by L(K) � K � KT

�(h) L:M22 → M22 given by L(K) �

[
�4 3

�10 7

]
K

3. Consider the linear operator L: R4 → R
4 from Example 12.

(a) Verify that pL(x) � (x � 3)3(x � 5) � x4 � 4x3 � 18x2 � 108x � 135.
(Hint: Use a cofactor expansion along the third column.)

(b) Show that {[�1,1,�2,8]} is a basis for the eigenspace E�5 for L by solving
an appropriate homogeneous system.

4. Let L: P2 → P2 be the translation operator given by L(p(x)) � p(x � a), for
some (fixed) real number a.
�(a) Find all eigenvalues for L when a � 1,and find a basis for each eigenspace.

(b) Find all eigenvalues for L when a is an arbitrary nonzero number,and find
a basis for each eigenspace.

5. Let A be an n � n upper triangular matrix with all main diagonal entries equal.
Show that A is diagonalizable if and only if A is a diagonal matrix.

6. Explain why Examples 8 and 9 provide counterexamples to the converse of
Corollary 5.24.

�7. (a) Give an example of a 3 � 3 upper triangular matrix having an eigenvalue
� with algebraic multiplicity 3 and geometric multiplicity 2.

(b) Give an example of a 3 � 3 upper triangular matrix, one of whose
eigenvalues has algebraic multiplicity 2 and geometric multiplicity 2.

8. (a) Suppose that L is a linear operator on a nontrivial finite dimensional vector
space. Prove L is an isomorphism if and only if 0 is not an eigenvalue
for L.

(b) Let L be an isomorphism from a vector space to itself. Suppose that � is an
eigenvalue for L having eigenvector v. Prove that v is an eigenvector for
L�1 corresponding to the eigenvalue 1/�.

9. Let L be a linear operator on a nontrivial finite dimensional vector space V , and
let B be an ordered basis for V .Also, let A be the matrix for L with respect to B.
Assume that A is a diagonalizable matrix. Prove that there is an ordered basis
C for V such that the matrix representation of L with respect to C is diagonal
and hence that L is a diagonalizable operator.

10. Let A be an n � n matrix. Suppose that {v1, . . . ,vn} is a basis for R
n of

eigenvectors for A with corresponding eigenvalues �1,�2, . . . ,�n. Show that
|A| � �1�2 · · ·�n.
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11. Let L be a linear operator on an n-dimensional vector space, with {�1, . . . ,�k}
equal to the set of all distinct eigenvalues for L. Show that �k

i�1(geometric
multiplicity of �i) � n.

12. Let L be a nontrivial linear operator on a nontrivial finite dimensional vector
space V . Show that if L is diagonalizable, then every root of pL(x) is real.

13. Let A and B be commuting n � n matrices.

(a) Show that if � is an eigenvalue for A and v ∈ E� (the eigenspace for A
associated with �), then Bv ∈ E�.

(b) Prove that if A has n distinct eigenvalues, then B is diagonalizable.

14. (a) Let A be a fixed 2 � 2 matrix with distinct eigenvalues �1 and �2. Show
that the linear operator L: M22 → M22 given by L(K) � AK is diagonal-
izable with eigenvalues �1 and �2, each having multiplicity 2. (Hint: Use
eigenvectors for A to help create eigenvectors for L.)

(b) Generalize part (a) as follows: Let A be a fixed diagonalizable n � n
matrix with distinct eigenvalues �1, . . . ,�k. Show that the linear operator
L: Mnn → Mnn given by L(K) � AK is diagonalizable with eigenvalues
�1, . . . ,�k. In addition, show that, for each i, the geometric multiplicity of
�i for L is n times the geometric multiplicity of �i for A.

�15. Let L: V → V be a linear operator on a finite dimensional vector space V . Sup-
pose that �1 and �2 are distinct eigenvalues for L and that B1 and B2 are bases
for the eigenspaces E�1 and E�2 for L. Prove that B1 ∩ B2 is empty.

�16. Let L: V → V be a linear operator on a finite dimensional vector space V . Sup-
pose that �1, . . . ,�n are distinct eigenvalues for L and that Bi � {vi1, . . . ,viki } is
a basis for the eigenspace E�i , for 1 � i � n. The goal of this exercise is to show
that B � ∪n

i�1Bi is linearly independent. Suppose that �n
i�1�ki

j�1aijvij � 0.

(a) Let ui � �ki
j�1aijvij . Show that ui ∈ E�i .

(b) Note that �n
i�1ui � 0. Use Theorem 5.23 to show that ui � 0,for 1 � i � n.

(c) Conclude that aij � 0, for 1 � i � n and 1 � j � ki .

(d) Explain why parts (a) through (c) prove that B is linearly independent.

17. Verify that the Cayley-Hamilton Theorem holds for the matrix in Example 7.

�18. True or False:

(a) If L: V → V is a linear operator and � is an eigenvalue for L, then E� �
{�L(v) |v ∈ V}.

(b) If L is a linear operator on a finite dimensional vector space V and A is a
matrix for L with respect to some ordered basis for V , then pL(x) � pA(x).

(c) If dim(V) � 5, a linear operator L on V is diagonalizable when L has
five linearly independent eigenvectors.
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(d) Eigenvectors for a given linear operator L are linearly independent if and
only if they correspond to distinct eigenvalues of L.

(e) If L is a linear operator on a finite dimensional vector space,then the union
of bases for distinct eigenspaces for L is a linearly independent set.

(f ) If L: R
6 → R

6 is a diagonalizable linear operator, then the union of bases
for all the distinct eigenspaces of L is actually a basis for R

6.

(g) If L is a diagonalizable linear operator on a finite dimensional vector space
V , the Generalized Diagonalization Method produces a basis B for V so that
the matrix for L with respect to B is diagonal.

(h) If L is a linear operator on a finite dimensional vector space V and � is an
eigenvalue for L, then the algebraic multiplicity of � is never greater than
the geometric multiplicity of �.

(i) If dim(V) � 7 and L: V → V is a linear operator, then L is diagonalizable
whenever the sum of the algebraic multiplicities of all the eigenvalues
equals 7.

(j) If A �

[
1 2
0 4

]
, then (1I2 � A)(4I2 � A) � O2.

REVIEW EXERCISES FOR CHAPTER 5
1. Which of the following are linear transformations? Prove your answer is correct.

�(a) f :R3 → R
3 given by f ([x,y,z]) � [4z � y,3x � 1,2y � 5x]

(b) g:P3 → M32 given by g(ax3 �bx2 �cx �d) �

⎡
⎣ 4b � c 3d � a

2d � 3a 4c
5a � c � 2d 2b � 3d

⎤
⎦

(c) h:R2 → R
2 given by h([x,y]) �

[
2
√

xy,�3x2y
]

2. Find the image of [2,�3] under the linear transformation that rotates every
vector [x,y] in R

2 counterclockwise about the origin through � � 2�/3. Use
three decimal places in your answer.

�3. Let B and C be fixed n � n matrices,with B nonsingular. Show that the mapping
f : Mnn → Mnn given by f (A) � CAB�1 is a linear operator.

�4. Suppose L: R
3 → R

3 is a linear operator and L([1,0,0]) � [�3,2,4],
L([0,1,0]) � [5,�1,3], and L([0,0,1]) � [�4,0,�2]. Find L([6,2,�7]). Find
L([x,y,z]), for any [x,y,z] ∈ R

3.

5. Let L1: V → W and L2: W → X be linear transformations. Suppose V ′ is a
subspace of V and X ′ is a subspace of X .

(a) Prove that (L2 ◦ L1)(V ′) is a subspace of X .
�(b) Prove that (L2 ◦ L1)

�1(X ′) is a subspace of V .
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6. For each of the following linear transformations L:V → W ,find the matrix ABC

for L with respect to the given bases B for V and C for W using the method of
Theorem 5.5:
�(a) L: R3 → R

2 given by L([x,y,z]) � [3y � 2z,4x � 7y] with
B � ([�5,�3,�2], [3,0,1], [5,2,2]) and C � ([4,3], [�3,�2])

(b) L: M22 → P2 given by L

([
a b
c d

])
� (2d � c � 3a)x2 � (4b � a)x �

(2b � 3d � 5c) with B �

([
3 4

�7 2

]
,

[
�2 �2

3 �2

]
,

[
3 2

�2 3

]
,

[
�6 �3

3 �4

])
and C � (�6x2 � x � 5,7x2 � 6x � 2,2x2 � 2x � 1)

7. In each case,find the matrix ADE for the given linear transformation L:V → W
with respect to the given bases D and E by first finding the matrix for L with
respect to the standard bases B and C for V and W , respectively,and then using
the method of Theorem 5.6.

(a) L: R
4 → R

3 given by L([a,b,c,d]) � [2a � b � 3c,3b � a � 4d,c � 2d]
with D � ([�4,7,3,0], [2,�1,�1,2], [3,�2,�2,3], [�2,2,1,1]) and E �
([�2,�1,2], [�6,2,�1], [3,�2,2])

�(b) L:P2 → M22 given by

L(ax2 � bx � c) �

[
6a � b � c 3b � 2c

2a � 4c a � 5b � c

]

with D � (�5x2 � 2x � 5,3x2 � x � 1, �2x2 � x � 3)

and E �

([
3 2
2 5

]
,

[
2 1
1 4

]
,

[
1 1
2 4

]
,

[
4 2
2 7

])
8. Find the matrix with respect to the standard bases for the composition L3 ◦ L2 ◦

L1:R3 → R
3 if L1 is a reflection through the yz-plane,L2 is a rotation about the

z-axis of 90◦, and L3 is a projection onto the xz-plane.

9. Suppose L: R
3 → R

3 is the linear operator whose matrix with respect to the

standard basis B for R
3 is ABB � 1

41

⎡
⎣ 23 36 12

36 �31 �24
�12 24 49

⎤
⎦.

�(a) Find pABB(x). (Be sure to incorporate 1
41 correctly into your calculations.)

(b) Find all eigenvalues for ABB and fundamental eigenvectors for each
eigenvalue.

(c) Combine the fundamental eigenvectors to form a basis C for R
3.

(d) Find ACC . (Hint: Use ABB and the transition matrix P from C to B.)

(e) Use ACC to give a geometric description of the operator L, as was done in
Example 6 of Section 5.2.
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10. Consider the linear transformation L: R4 → R
4 given by

L

⎛
⎜⎜⎝
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦
⎞
⎟⎟⎠�

⎡
⎢⎢⎣

3 1 �3 5

2 1 �1 2

2 3 5 �6

1 4 10 �13

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ .

�(a) Find a basis for ker(L) and a basis for range(L).

(b) Verify that dim(ker(L)) � dim(range(L)) � dim(R4).

(c) Is [�18,26,�4,2] in ker(L)? Is [�18,26,�6,2] in ker(L)? Why or why
not?

(d) Is [8,3,�11,�23] in range(L)? Why or why not?

11. For L: M32 → P3 given by L

([
a b c
d e f

])
� (a � f )x3 � (b � 2c)x2 �

(d � 3f )x, find a basis for ker(L) and a basis for range(L), and verify that
dim(ker(L)) � dim(range(L)) � dim(M32).

�12. Let L1:V → W and L2:W → X be linear transformations.

(a) Show that dim(ker(L1)) � dim(ker(L2 ◦ L1)).

(b) Find linear transformations L1,L2:R2 → R
2 for which dim(ker(L1)) <

dim(ker(L2 ◦ L1)).

13. Let A be a fixed m � n matrix, and let L:Rn → R
m and M :Rm → R

n be given
by L(X) � AX and M(Y) � AT Y.

(a) Prove that dim(ker(L)) � dim(ker(M)) � n � m.

(b) Prove that if L is onto, then M is one-to-one.

(c) Is the converse to part (b) true? Prove or disprove.

14. Consider L:P3 → M22 given by L
(
ax3 � bx2 � cx � d

)
�

[
a � d 2b

b c � d

]
.

(a) Without using row reduction, determine whether L is one-to-one and
whether L is onto.

(b) What is dim(ker(L))? What is dim(range(L))?

15. In each case, use row reduction to determine whether the given linear trans-
formation L is one-to-one and whether L is onto, and find dim(ker(L)) and
dim(range(L)).

�(a) L: R
3 → R

3 given by L

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎣ 2 �1 1

�11 3 �3
13 �8 9

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦
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(b) L: R
4 → P2 having matrix

⎡
⎣6 3 21 5

3 2 10 2
2 �1 9 1

⎤
⎦with respect to the standard

bases for R
4 and P2

16. (a) Prove that any linear transformation from P3 to R
3 is not one-to-one.

(b) Prove that any linear transformation from P2 to M22 is not onto.

17. Let L:V → W be a linear transformation.

(a) Suppose L is one-to-one and L(v1) � cL(v2) with c �� 0 for some vectors
v1,v2 ∈ V . Show that v1 � cv2,and explain why this result agrees with part
(1) of Theorem 5.13.

(b) Suppose L is onto and w ∈ W . Let v1,v2 ∈ V and suppose that L(av1 �
bv2) �� w for all a,b ∈ R. Prove that {v1,v2} does not span V . (Hint: Use
part (2) of Theorem 5.13.)

18. Consider the linear operators L1 and L2 on R
4 having the given matrices with

respect to the standard basis:

L1:

⎡
⎢⎢⎣

3 6 1 1
5 2 �2 1
2 1 0 1
1 �1 �2 �1

⎤
⎥⎥⎦ , L2:

⎡
⎢⎢⎣

9 8 5 4
9 13 4 7
5 9 2 5

�5 �2 �2 0

⎤
⎥⎥⎦ .

�(a) Show that L1 and L2 are isomorphisms.
�(b) Calculate the matrices for L2 ◦ L1,L�1

1 , and L�1
2 .

(c) Verify that the matrix for (L2 ◦ L1)
�1 agrees with the matrix for L�1

1 ◦ L�1
2 .

19. (a) Show that a shear in the z-direction with factor k (see Table 5.1 in Section
5.2) is an isomorphism from R

3 to itself.

(b) Calculate the inverse isomorphism of the shear in part (a). Describe the
effect of the inverse geometrically.

20. Consider the subspace W of Mnn consisting of all n � n symmetric matrices,
and let B be a fixed n � n nonsingular matrix.

(a) Prove that if A ∈ W , then BT AB ∈ W .

(b) Prove that the linear operator on W given by L(A) � BT AB is an isomor-
phism. (Hint: Show either that L is one-to-one or that L is onto, and then
use Corollary 5.21.)

21. Consider the subspace W of P4 consisting of all polynomials of the form ax4 �
bx3 � cx2, for some a,b,c ∈ R.
�(a) Prove that L:W → P3 given by L(p) � p′ � p′′ is one-to-one.

(b) Is L an isomorphism from W to P3?

(c) Find a vector in P3 that is not in range(L).



 

Review Exercises for Chapter 5 393

22. For each of the following, let L be the indicated linear operator.

(i) Find all eigenvalues for L,and a basis of fundamental eigenvectors for each
eigenspace.

(ii) Compare the geometric and algebraic multiplicities of each eigenvalue,
and determine whether L is diagonalizable.

(iii) If L is diagonalizable, find an ordered basis B of eigenvectors for L, a diag-
onal matrix D that is the matrix for L with respect to the basis B, and the
transition matrix P from B to the standard basis.

�(a) L: R
3 → R

3 having matrix

⎡
⎣�9 18 �16

32 �63 56
44 �84 75

⎤
⎦ with respect to the

standard basis

(b) L: R
3 → R

3 having matrix

⎡
⎣�1 �3 3

3 �1 �1
�1 1 �3

⎤
⎦ with respect to the

standard basis

�(c) L: R
3 → R

3 having matrix

⎡
⎣ �97 20 12

�300 63 36
�300 60 39

⎤
⎦ with respect to the

standard basis

(d) L:P3 → P3 given by L(p(x)) � (x � 1)p′(x) � 2p(x)

23. Show that L:R3 → R
3 given by reflection through the plane determined by the

linearly independent vectors [a,b,c] and [d,e, f ] is diagonalizable, and state a
diagonal matrix D that is similar to the matrix for L with respect to the standard
basis for R

3, as well as a basis of eigenvectors for L. (Hint: Use Exercise 8(a) in
Section 3.1 to find a vector that is orthogonal to both [a,b,c] and [d,e, f ].Then,
follow the strategy outlined in the last paragraph of Example 6 in Section 5.2.)

24. Verify that the Cayley-HamiltonTheorem holds for the matrix in Example 12 of
Section 5.6. (Hint: See part (a) of Exercise 3 in Section 5.6.)

�25. True or False:

(a) There is only one linear transformation L:R2 → R
2 such that L(i) � j and

L(j) � i.

(b) There is only one linear transformation L:R3 → R
2 such that L(i) � j and

L(j) � i.

(c) The matrix with respect to the standard basis for a clockwise rotation

about the origin through an angle of 45◦ in R
2 is

(√
2

2

)[ 1 1
�1 1

]
.

(d) If L: V → W is a linear transformation and Y is a subspace of V , then
T : Y → W given by T (y) � L(y) for all y ∈ Y is a linear transformation.
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(e) Let B be a fixed m � n matrix,and let L:Rn → R
m be given by L(X) � BX.

Then B is the matrix for L with respect to the standard bases for R
n

and R
m.

(f) If L: V → W is a linear transformation between nontrivial finite dimen-
sional vector spaces, and if ABC and ADE are matrices for L with respect
to the bases B and D for V and C and E for W , then ABC and ADE are
similar matrices.

(g) There is a linear operator L on R
5 such that ker(L) � range(L).

(h) If A is an m � n matrix and L: R
n → R

m is the linear transformation
L(X) � AX, then dim(range(L)) � dim(row space of A).

(i) If A is an m � n matrix and L: R
n → R

m is the linear transformation
L(X) � AX, then range(L) � column space of A.

(j) The DimensionTheorem shows that if L:V → W is a linear transformation
and V is finite dimensional, then W is also finite dimensional.

(k) A linear transformation L: V → W is one-to-one if and only if ker(L) is
empty.

(l) If V is a finite dimensional vector space, then a linear transformation L:
V → W is one-to-one if and only if dim(range(L)) � dim(V).

(m) Every linear transformation is either one-to-one or onto or both.

(n) If V is a finite dimensional vector space and L: V → W is an onto linear
transformation, then W is finite dimensional.

(o) If L: V → W is a one-to-one linear transformation and T is a linearly
independent subset of V , then L(T ) is a linearly independent subset
of W .

(p) If L: V → W is a one-to-one and onto function between vector spaces,
then L is a linear transformation.

(q) If V and W are nontrivial finite dimensional vector spaces,and L:V → W
is a linear transformation, then L is an isomorphism if and only if the
matrix for L with respect to some bases for V and W is square.

(r) If L:R3 → R
3 is the isomorphism that reflects vectors through the plane

2x � 3y � z � 0, then L�1 � L.

(s) Every nontrivial vector space V is isomorphic to R
n for some n.

(t) If W1 and W2 are two planes through the origin in R
3, then there exists

an isomorphism L:W1 → W2.

(u) If L:V → W is a linear transformation and M :W → X is an isomorphism,
then ker(M ◦ L) � ker(L).
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(v) If L:V → W is a linear transformation and M :W → X is an isomorphism,
then range(M ◦ L) � range(L).

(w) If A is an n � n matrix and � is an eigenvalue for A, then E� is the kernel
of the linear operator on R

n whose matrix with respect to the standard
basis is (�In � A).

(x) If L is a linear operator on an n-dimensional vector space V such that L has
n distinct eigenvalues, then the algebraic multiplicity for each eigenvalue
is 1.

(y) If L is a linear operator on a nontrivial finite dimensional vector space
V , x2 is a factor of pL(x), and dim(E0) � 1, then L is not diagonalizable.

(z) If L is a linear operator on a nontrivial finite dimensional vector space
V and B1, . . . ,Bk are bases for k different eigenspaces for L, then B1 ∪
B2 ∪ ·· · ∪ Bk is a basis for a subspace of V .
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